Chin. Phys. Lett.  2009, Vol. 26 Issue (2): 024201    DOI: 10.1088/0256-307X/26/2/024201
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Nonlinear Photoluminescence from ZnO Nanobelts
ZHOU Zhang-Kai1, HAO Zhong-Hua1, MEI Zong-Wei2, WEN Xiao-Gang2, YANG Shi-He3
1Department of Physics and Key Laboratory of Acoustic and Photonic Materials and Devices (Ministry of Education), Wuhan University, Wuhan 4300722School of Material Science and Engineering, Sichuan University, Chengdu 6100653Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
Cite this article:   
ZHOU Zhang-Kai, HAO Zhong-Hua, MEI Zong-Wei et al  2009 Chin. Phys. Lett. 26 024201
Download: PDF(564KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The nonlinear photoluminescence (PL) including second-harmonic generation (SHG) and the multiphoton luminescence (MPL) around 385nm and 530nm from ZnO nanobelts are investigated by using near-infrared excitations. The excitation wavelength dependence of MPL intensity reveals resonant energy transfer from SHG to MPL near the band gap excitation. The lifetime measurement of the MPL shows a much slower decay process of the defect emission, which results from the generation and recombination of both donors and acceptors on the disordered surface of the ZnO nanobelts.
Keywords: 42.65.Ky      42.65.Re      78.47.Jc      78.55.Et     
Received: 04 June 2008      Published: 20 January 2009
PACS:  42.65.Ky (Frequency conversion; harmonic generation, including higher-order harmonic generation)  
  42.65.Re (Ultrafast processes; optical pulse generation and pulse compression)  
  78.47.Jc  
  78.55.Et (II-VI semiconductors)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/26/2/024201       OR      https://cpl.iphy.ac.cn/Y2009/V26/I2/024201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHOU Zhang-Kai
HAO Zhong-Hua
MEI Zong-Wei
WEN Xiao-Gang
YANG Shi-He
[1] Huang M H et al 2001 Science 292 1897
[2] Nomura K et al 2003 Science 300 1269
[3] Service R F 1997 Science 276 895
[4] Wang Z L 2007 Appl. Phys. A: Mater. Sci. Proc. 88 7
[5] Zou B S et al 2006 J. Phys. Chem. B 110 12865
[6] Tang G Q et al 2004 Chem. Phys. Lett. 395 97
[7] Jung S W et al 2002 Appl. Phys. Lett. 80 1924
[8] Prasanth R et al 2006 Appl. Phys. Lett. 88181501
[9] Cao H et al 1998 Appl. Phys. Lett. 73 572
[10] Griebner U et al 1998 Appl. Phys. B 67 757
[11] Wang G, Wong G K L and Ketterson J B 2001 Appl.Opt. 40 5436
[12] Wang G et al 2002 Appl. Phys. Lett. 80 401
[13] Johnson J C et al 2002 Nano. Lett. 2 279
[14] Petrov G I et al 2003 Appl. Phys. Lett. 833993
[15] Neumann U et al 2004 Appl. Phys. Lett. 84 170
[16] Scheidt T et al 2004 Eur. Phys. J. Appl. Phys. 27 393
[17] Xiao S et al 2008 Chin. Phys. B 17 1291
[18] Han Y B et al 2005 Opt. Exp. 13 9211
[19] Chu S S et al 2007 Chin. Phys. Lett 24 727
[20] Ma Jin et al 1999 Thin Solid Films 357 98
[21] Li G R et al 2008 J. Phys. Chem. C 112 2927
[22] Dai D C et al 2005 Opt. Lett. 30 3377
[23] Lin J H et al 2005 J. Appl. Phys. 97 33526
[24] Dai D. C et al 2006 IEEE Photon. Tech. Lett. 18 1533
[25] Yu L et al 2008 Chem. Phys. Lett. 465 272
[26] Liu D F et al 2008 Langmuir 24 5052
[27] Pan Z W , Dai Z R and Wang Z L 2001 Science 291 1947
[28] Wang Z L 2004 J. Phys.: Condens. Matter. 16R829
[29] Zhang X Y et al 2004 Chem. Phys. Lett. 393 17
[30] Comini E et al 2002 Appl. Phys. Lett. 811869
[31] Wang X D et al 2004 J. Phys. Chem. B 108 8773
[32] Kong X Y et al 2004 Science 303 1348
[33] Arnold M et al 2003 J. Phys. Chem. B 107 659
[34] Bai X D et al 2003 Appl. Phys. Lett. 82 4806
[35] Hughes W L and Wang Z L 2003 Appl. Phys. Lett. 82 2886
[36] Sadek A Z et al 2007 IEEE Sensors J. 7 919
[37] Wen X G. et al 2005 J. Phys. Chem. B 10915303
[38] Koida T et al 2004 Phys. Status Solidi A 2012841
[39] Yamamoto S et al 2007 J. Lumin. 126 257
[40] Van Dijken A et al 2000 J. Lumin. 90 123
Related articles from Frontiers Journals
[1] ZHANG Feng-Feng, YANG Feng, ZHANG Shen-Jin, WANG Zhi-Min, XU Feng-Liang, PENG Qin-Jun, ZHANG Jing-Yuan, WANG Xiao-Yang, CHEN Chuang-Tian, XU Zu-Yan. A Polarization-Adjustable Picosecond Deep-Ultraviolet Laser for Spin- and Angle-Resolved Photoemission Spectroscopy[J]. Chin. Phys. Lett., 2012, 29(6): 024201
[2] SHEN Jian, ZHANG Huai-Wu, LI Yuan-Xun. Terahertz Emission of Ferromagnetic Ni-Fe Thin Films Excited by Ultrafast Laser Pulses[J]. Chin. Phys. Lett., 2012, 29(6): 024201
[3] WANG Li-Rong, WANG Gui-Ling, ZHANG Xin, LIU Li-Juan, WANG Xiao-Yang, ZHU Yong, CHEN Chuang-Tian. Generation of Ultraviolet Radiation at 266 nm with RbBe2BO3F2 Crystal[J]. Chin. Phys. Lett., 2012, 29(6): 024201
[4] HAN Ying,**,HOU Lan-Tian,ZHOU Gui-Yao,YUAN Jin-Hui,XIA Chang-Ming,WANG Wei,WANG Chao,HOU Zhi-Yun,. Flat Supercontinuum Generation within the Telecommunication Wave Bands in a Photonic Crystal Fiber with Central Holes[J]. Chin. Phys. Lett., 2012, 29(5): 024201
[5] M. A. Ismail,S. J. Tan,N. S. Shahabuddin,S. W. Harun,**,H. Arof,H. Ahmad. Performance Comparison of Mode-Locked Erbium-Doped Fiber Laser with Nonlinear Polarization Rotation and Saturable Absorber Approaches[J]. Chin. Phys. Lett., 2012, 29(5): 024201
[6] HUANG Xi,QIN Cui,YU Yu,ZHANG Zheng,ZHANG Xin-Liang**. Single- and Dual-Channel DPSK Signal Amplitude Regeneration Based on a Single Semiconductor Optical Amplifier[J]. Chin. Phys. Lett., 2012, 29(5): 024201
[7] WU Wen-Han,HUANG Xi,YU Yu**,ZHANG Xin-Liang. RZ-DQPSK Signal Amplitude Regeneration Using a Semiconductor Optical Amplifier[J]. Chin. Phys. Lett., 2012, 29(4): 024201
[8] KONG Duan-Hua, ZHU Hong-Liang, LIANG Song, QIU Ji-Fang, ZHAO Ling-Juan. Ultrashort Pulse Generation at Quasi-40-GHz by Using a Two-Section Passively Mode-Locked InGaAsP-InP Tensile Strained Quantum-Well Laser[J]. Chin. Phys. Lett., 2012, 29(2): 024201
[9] HAN Ying, **, HOU Lan-Tian, YUAN Jin-Hui, XIA Chang-Ming, ZHOU Gui-Yao,. Ultraviolet Continuum Generation in the Fundamental Mode of Photonic Crystal Fibers[J]. Chin. Phys. Lett., 2012, 29(1): 024201
[10] DONG Jian-Ji**, LUO Bo-Wen, ZHANG Yin, LEI Lei, HUANG De-Xiu, ZHANG Xin-Liang. All-Optical Temporal Differentiator Using a High Resolution Optical Arbitrary Waveform Shaper[J]. Chin. Phys. Lett., 2012, 29(1): 024201
[11] TENG Hao, MA Jing-Long, WANG Zhao-Hua, ZHENG Yi, GE Xu-Lei, ZHANG Wei, WEI Zhi-Yi**, LI Yu-Tong, ZHANG Jie,. A 100-TW Ti:Sapphire Laser System at a Repetition Rate of 0.1 Hz[J]. Chin. Phys. Lett., 2012, 29(1): 024201
[12] LIU Ling, XU Xiao-Liang**, LEI Jie-Mei, YIN Nai-Qiang. Nanostructured Metal-Enhanced Photoluminescence of Micro-Sr2Si5N8:Eu2+ Phosphors[J]. Chin. Phys. Lett., 2012, 29(1): 024201
[13] LI Xiao**, XIAO Hu, DONG Xiao-Lin, MA Yan-Xing, XU Xiao-Jun** . Coherent Beam Combining of Two Slab Laser Amplifiers and Second-Harmonic Phase Locking Based on a Multi-Dithering Technique[J]. Chin. Phys. Lett., 2011, 28(9): 024201
[14] LI Ping-Xue**<\sup>, , ZHANG Xue-Xia, LIU Zhi, CHI Jun-Jie . Large-Mode-Area Double-Cladding Photonic Crystal Fiber Laser in the Watt Range at 980nm[J]. Chin. Phys. Lett., 2011, 28(8): 024201
[15] LIU Hui, ZHANG Hang, SI Jin-Hai**, YAN Li-He, CHEN Feng, HOU Xun . Elimination of the Coherent Artifact in a Pump-Probe Experiment by Directly Detecting the Background-Free Diffraction Signal[J]. Chin. Phys. Lett., 2011, 28(8): 024201
Viewed
Full text


Abstract