Chin. Phys. Lett.  2009, Vol. 26 Issue (2): 020304    DOI: 10.1088/0256-307X/26/2/020304
GENERAL |
Separability of Bipartite Superoperator Based on Witness
ZHANG Shun, ZHOU Zheng-Wei, GUO Guang-Can
Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026
Cite this article:   
ZHANG Shun, ZHOU Zheng-Wei, GUO Guang-Can 2009 Chin. Phys. Lett. 26 020304
Download: PDF(240KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Based on the isomorphic relation between operator space L(H) and Hilbert space H⊕2, Cirac et al. mapped the global superoperator to a mixed state E which has the same separability of the initial superoperator. Zhang et al. [Phys. Rev. A 76(2007)012334] provided a calculable lower bound for both the linear and nonlinear witness. We use this bound to detect the entanglement of E to judge the separability of the initial superoperator. With the help of local orthogonal observables, we directly describe the separable condition of superoperator by its each operator. Lastly, using the lower bound of the nonlinear witness, we provide a calculable entanglement factor of bipartite superoperator.
Keywords: 03.67.Mn      03.65.Ta      03.65.Yd     
Received: 02 September 2008      Published: 20 January 2009
PACS:  03.67.Mn (Entanglement measures, witnesses, and other characterizations)  
  03.65.Ta (Foundations of quantum mechanics; measurement theory)  
  03.65.Yd  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/26/2/020304       OR      https://cpl.iphy.ac.cn/Y2009/V26/I2/020304
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHANG Shun
ZHOU Zheng-Wei
GUO Guang-Can
[1] Einstein A, Podolsky B and Rosen N 1935 Phys. Rev. 47 777
[2] Cirac I et al 2001 Phys. Rev. Lett. 86 544
[3] Yu S and Liu N L 2005 Phys. Rev. Lett. 95150504
[4] G\"{uhne O et al 2006 Phys. Rev. A 74010301(R)
[5] Zhang C J, Zhang Y S, Zhang S and Guo G C 2007 Phys.Rev. A 76 012334
[6] Osborne T J 2005 Phys. Rev. A 72 022309
[7] Wang X G and Zanardi P 2003 Phys. Rev. A 66044303
[8] Rungta P et al 2001 Phys. Rev. A 64 042315
[9] Lin Q et al 2007 Chin. Phys. Lett. 24 1809
[10] Fiurasek J 2004 Phys. Rev. A 70 032308
[11] Vidal G, Jonathan D and Nielsen M A 2000 Phys. Rev.A 62 012304
[12] Vedral V, Plenio M B 1998 Phys. Rev. A 571619
Related articles from Frontiers Journals
[1] QIN Meng, ZHAI Xiao-Yue, CHEN Xuan, LI Yan-Biao, WANG Xiao, BAI Zhong. Effect of Spin-Orbit Interaction and Input State on Quantum Discord and Teleportation of Two-Qubit Heisenberg Systems[J]. Chin. Phys. Lett., 2012, 29(3): 020304
[2] CAO Gang, WANG Li, TU Tao, LI Hai-Ou, XIAO Ming, GUO Guo-Ping. Pulse Designed Coherent Dynamics of a Quantum Dot Charge Qubit[J]. Chin. Phys. Lett., 2012, 29(3): 020304
[3] GE Rong-Chun, LI Chuan-Feng, GUO Guang-Can. Spin Dynamics in the XY Model[J]. Chin. Phys. Lett., 2012, 29(3): 020304
[4] M. Ramzan. Decoherence and Multipartite Entanglement of Non-Inertial Observers[J]. Chin. Phys. Lett., 2012, 29(2): 020304
[5] S. P. Toh**, Hishamuddin Zainuddin, Kim Eng Foo,. Randomly Generating Four Mixed Bell-Diagonal States with a Concurrences Sum to Unity[J]. Chin. Phys. Lett., 2012, 29(1): 020304
[6] LI Jun-Gang, **, ZOU Jian, **, XU Bao-Ming, SHAO Bin, . Quantum Correlation Generation in a Damped Cavity[J]. Chin. Phys. Lett., 2011, 28(9): 020304
[7] SUN Ke-Wei**, CHEN Qing-Hu . Ground-State Behavior of the Quantum Compass Model in an External Field[J]. Chin. Phys. Lett., 2011, 28(9): 020304
[8] LIU Zhi-Qiang, LIANG Xian-Ting** . Non-Markovian and Non-Perturbative Entanglement Dynamics of Biomolecular Excitons[J]. Chin. Phys. Lett., 2011, 28(8): 020304
[9] ZHENG An-Shou, **, LIU Ji-Bing, CHEN Hong-Yun . N−Qubit W State of Spatially Separated Atoms via Fractional Adiabatic Passage[J]. Chin. Phys. Lett., 2011, 28(8): 020304
[10] Abbass Sabour, Mojtaba Jafarpour** . A Probability Measure for Entanglement of Pure Two-Qubit Systems and a Useful Interpretation for Concurrence[J]. Chin. Phys. Lett., 2011, 28(7): 020304
[11] LIN Bing-Sheng**, HENG Tai-Hua . Energy Spectra of the Harmonic Oscillator in a Generalized Noncommutative Phase Space of Arbitrary Dimension[J]. Chin. Phys. Lett., 2011, 28(7): 020304
[12] YAN Jun-Yan**, WANG Lin-Cheng, YI Xue-Xi . Sudden Transition between Quantum Correlation and Classical Correlation: the Effect of Interaction between Subsystems[J]. Chin. Phys. Lett., 2011, 28(6): 020304
[13] TANG Jian-Shun, LI Yu-Long, LI Chuan-Feng**, XU Jin-Shi, CHEN Geng, ZOU Yang, ZHOU Zong-Quan, GUO Guang-Can . Experimental Violation of Multiple-Measurement Time-Domain Bell's Inequalities[J]. Chin. Phys. Lett., 2011, 28(6): 020304
[14] XU Guo-Fu**, TONG Dian-Min . Non-Markovian Effect on the Classical and Quantum Correlations[J]. Chin. Phys. Lett., 2011, 28(6): 020304
[15] SU Xiao-Qiang** . Entanglement Enhancement in an XY Spin Chain[J]. Chin. Phys. Lett., 2011, 28(5): 020304
Viewed
Full text


Abstract