GENERAL |
|
|
|
|
Separability of Bipartite Superoperator Based on Witness |
ZHANG Shun, ZHOU Zheng-Wei, GUO Guang-Can |
Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026 |
|
Cite this article: |
ZHANG Shun, ZHOU Zheng-Wei, GUO Guang-Can 2009 Chin. Phys. Lett. 26 020304 |
|
|
Abstract Based on the isomorphic relation between operator space L(H) and Hilbert space H⊕2, Cirac et al. mapped the global superoperator to a mixed state E which has the same separability of the initial superoperator. Zhang et al. [Phys. Rev. A 76(2007)012334] provided a calculable lower bound for both the linear and nonlinear witness. We use this bound to detect the entanglement of E to judge the separability of the initial superoperator. With the help of local orthogonal observables, we directly describe the separable condition of superoperator by its each operator. Lastly, using the lower bound of the nonlinear witness, we provide a calculable entanglement factor of bipartite superoperator.
|
Keywords:
03.67.Mn
03.65.Ta
03.65.Yd
|
|
Received: 02 September 2008
Published: 20 January 2009
|
|
PACS: |
03.67.Mn
|
(Entanglement measures, witnesses, and other characterizations)
|
|
03.65.Ta
|
(Foundations of quantum mechanics; measurement theory)
|
|
03.65.Yd
|
|
|
|
|
|
[1] Einstein A, Podolsky B and Rosen N 1935 Phys. Rev. 47 777 [2] Cirac I et al 2001 Phys. Rev. Lett. 86 544 [3] Yu S and Liu N L 2005 Phys. Rev. Lett. 95150504 [4] G\"{uhne O et al 2006 Phys. Rev. A 74010301(R) [5] Zhang C J, Zhang Y S, Zhang S and Guo G C 2007 Phys.Rev. A 76 012334 [6] Osborne T J 2005 Phys. Rev. A 72 022309 [7] Wang X G and Zanardi P 2003 Phys. Rev. A 66044303 [8] Rungta P et al 2001 Phys. Rev. A 64 042315 [9] Lin Q et al 2007 Chin. Phys. Lett. 24 1809 [10] Fiurasek J 2004 Phys. Rev. A 70 032308 [11] Vidal G, Jonathan D and Nielsen M A 2000 Phys. Rev.A 62 012304 [12] Vedral V, Plenio M B 1998 Phys. Rev. A 571619 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|