Chin. Phys. Lett.  2009, Vol. 26 Issue (2): 020201    DOI: 10.1088/0256-307X/26/2/020201
GENERAL |
Approximate Symmetry Reduction to the Perturbed One-Dimensional Nonlinear Schrödinger Equation
JIA Man1, WANG Jian-Yong2, LOU Sen-Yue 1,2,3
1Department of Physics, Shanghai Jiao Tong University, Shanghai 2002402Science Faculty of Ningbo University, Ningbo 3152113School of Mathematical Science, Fudan University, Shanghai 200433
Cite this article:   
JIA Man, WANG Jian-Yong, LOU Sen-Yue 2009 Chin. Phys. Lett. 26 020201
Download: PDF(188KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The one-dimensional nonlinear Schrödinger equation with a perturbation of polynomial type is considered. Using the approximate symmetry perturbation theory, the approximate symmetries and approximate symmetry reduction equations are obtained.
Keywords: 02.03.Ik      02.30.Jr     
Received: 19 September 2008      Published: 20 January 2009
PACS:  02.03.Ik  
  02.30.Jr (Partial differential equations)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/26/2/020201       OR      https://cpl.iphy.ac.cn/Y2009/V26/I2/020201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
JIA Man
WANG Jian-Yong
LOU Sen-Yue
[1] Ablowitz M, Clarkson P 1991 Solitons, NonlinearEvolution Equations and Inverse Scattering (Cambridge: CambridgeUniversity Press)
[2] Fushchich W I and Shtelen W M 1989 J. Phys. A: Math.Gen. 22 L887
[3] Abdullaev F Kh, Bronski J C and Papanicolaou G 2000 Physica D 135 369
[4] Euler N, Shulga M W and Steeb W H 1992 J. Phys. A:Math. Gen. 25 1095
[5] Euler M, Euler N and K\"oler A 1994 J. Phys. A: Math.Gen. 27 2083
[6] Euler N and Euler M 1994 Nonlinear Math. Phys. 1 41
[7] Fushchich W I and Shtelen W H 1989 J. Phys. A: Math.Gen. 22 887
[8] Jiao X Y, Yao R X and Lou S Y 2008 J. Math. Phys. 49 093505
Related articles from Frontiers Journals
[1] E. M. E. Zayed, S. A. Hoda Ibrahim. Exact Solutions of Nonlinear Evolution Equations in Mathematical Physics Using the Modified Simple Equation Method[J]. Chin. Phys. Lett., 2012, 29(6): 020201
[2] WU Yong-Qi. Exact Solutions to a Toda-Like Lattice Equation in 2+1 Dimensions[J]. Chin. Phys. Lett., 2012, 29(6): 020201
[3] CUI Kai. New Wronskian Form of the N-Soliton Solution to a (2+1)-Dimensional Breaking Soliton Equation[J]. Chin. Phys. Lett., 2012, 29(6): 020201
[4] CAO Ce-Wen**,ZHANG Guang-Yao. Lax Pairs for Discrete Integrable Equations via Darboux Transformations[J]. Chin. Phys. Lett., 2012, 29(5): 020201
[5] DAI Zheng-De**, WU Feng-Xia, LIU Jun and MU Gui. New Mechanical Feature of Two-Solitary Wave to the KdV Equation[J]. Chin. Phys. Lett., 2012, 29(4): 020201
[6] Mohammad Najafi**,Maliheh Najafi,M. T. Darvishi. New Exact Solutions to the (2+1)-Dimensional Ablowitz–Kaup–Newell–Segur Equation: Modification of the Extended Homoclinic Test Approach[J]. Chin. Phys. Lett., 2012, 29(4): 020201
[7] S. Karimi Vanani, F. Soleymani. Application of the Homotopy Perturbation Method to the Burgers Equation with Delay[J]. Chin. Phys. Lett., 2012, 29(3): 020201
[8] Saliou Youssoufa, Victor K. Kuetche, Timoleon C. Kofane. Generation of a New Coupled Ultra-Short Pulse System from a Group Theoretical Viewpoint: the Cartan Ehresman Connection[J]. Chin. Phys. Lett., 2012, 29(2): 020201
[9] LIU Ping**, FU Pei-Kai. Note on the Lax Pair of a Coupled Hybrid System[J]. Chin. Phys. Lett., 2012, 29(1): 020201
[10] LOU Yan, ZHU Jun-Yi** . Coupled Nonlinear Schrödinger Equations and the Miura Transformation[J]. Chin. Phys. Lett., 2011, 28(9): 020201
[11] A H Bokhari, F D Zaman, K Fakhar, *, A H Kara . A Note on the Invariance Properties and Conservation Laws of the Kadomstev–Petviashvili Equation with Power Law Nonlinearity[J]. Chin. Phys. Lett., 2011, 28(9): 020201
[12] LI Dong **, XIE Zheng, YI Dong-Yun . Numerical Simulation of Hyperbolic Gradient Flow with Pressure[J]. Chin. Phys. Lett., 2011, 28(7): 020201
[13] ZHAO Song-Lin**, ZHANG Da-Jun, CHEN Deng-Yuan . A Direct Linearization Method of the Non-Isospectral KdV Equation[J]. Chin. Phys. Lett., 2011, 28(6): 020201
[14] WU Yong-Qi. Asymptotic Behavior of Periodic Wave Solution to the Hirota–Satsuma Equation[J]. Chin. Phys. Lett., 2011, 28(6): 020201
[15] ZHAO Li-Yun, GUO Bo-Ling, HUANG Hai-Yang** . Blow-up Solutions to a Viscoelastic Fluid System and a Coupled Navier–Stokes/Phase-Field System in R2[J]. Chin. Phys. Lett., 2011, 28(6): 020201
Viewed
Full text


Abstract