Chin. Phys. Lett.  2009, Vol. 26 Issue (12): 120502    DOI: 10.1088/0256-307X/26/12/120502
GENERAL |
Chaotic Control of Network Traffic
YANG Tan, CUI Yi-Dong, JIN Yue-Hui, CHENG Shi-Duan
State Key Laboratory of Networking and Switching, Beijing University of Posts and Telecommunications, Beijing 100876
Cite this article:   
YANG Tan, CUI Yi-Dong, JIN Yue-Hui et al  2009 Chin. Phys. Lett. 26 120502
Download: PDF(670KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A method of chaotic control on network traffic is presented. By this method, the chaotic network traffic can be controlled to a pre-assigned equilibrium point according to chaotic prediction and the largest Lyapunov exponent of
the traffic on congested link is reduced, thereby the probability of traffic burst and network congestion can be reduced. Numerical examples show that this method is effective.
Keywords: 05.45.Gg      89.20.Hh     
Received: 15 May 2009      Published: 27 November 2009
PACS:  05.45.Gg (Control of chaos, applications of chaos)  
  89.20.Hh (World Wide Web, Internet)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/26/12/120502       OR      https://cpl.iphy.ac.cn/Y2009/V26/I12/120502
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
YANG Tan
CUI Yi-Dong
JIN Yue-Hui
CHENG Shi-Duan
[1] Liu D L and Shuai D X 2003 Acta Electron. Sin. 31 1866
[2] Xu Z, Wang R P, Fu C and Zhu W Y 2006 Chin. J. Comm. 27 199 (in Chinese)
[3] Leland W E, Taqqu M S, Willinger W, Wilson D V 1994 IEEE/ACM Trans.on Networking 2 1
[4] Mandelbrot B B 1997 Fractals: Form, Chance andDimension (San Francisco: W.H.Freeman) p 36
[5] Parlitz U 1998 Advanced Black-box Techniques(Boston: Kluwer Academic Publishers)
[6] Boccaletti S, Valladares D L, Pecora L M et al 1994 Phys. Rev. E 65 035204-1
[7] Kennel M, Brown R, Abarbanel H 1992 Phys. Rev. E 45 3403
[8] Fraser A 1989 IEEE Trans. Infor. Theory 35 245
[9] Wolf A, Swift J, Swinney H 1985 Physica D 16285
[10] Rosenstein M T. Collins J J and Luca C J 1993 Phys.D 65 117
[11] Kantz H 1994 Phys. Lett. A 185 77
[12] McNames J 1998 Workshop on Advanced Black-boxTechniques for Nonlinear Modeling 112
[13] Oiwa N N, Ferrara N F 2002 Phys. Rev. E 65036702-1
[14] Available athttp://www.cs.utexas.edu/$\sim$yzhang/research/ AbileneTM/
Related articles from Frontiers Journals
[1] Salman Ahmad, YUE Bao-Zeng. Bifurcation and Stability Analysis of the Hamiltonian–Casimir Model of Liquid Sloshing[J]. Chin. Phys. Lett., 2012, 29(6): 120502
[2] LI Jian-Ping,YU Lian-Chun,YU Mei-Chen,CHEN Yong**. Zero-Lag Synchronization in Spatiotemporal Chaotic Systems with Long Range Delay Couplings[J]. Chin. Phys. Lett., 2012, 29(5): 120502
[3] XIE Zheng, YI Dong-Yun, OUYANG Zhen-Zheng, LI Dong. Hyperedge Communities and Modularity Reveal Structure for Documents[J]. Chin. Phys. Lett., 2012, 29(3): 120502
[4] KADIR Abdurahman, WANG Xing-Yuan**, ZHAO Yu-Zhang . Generalized Synchronization of Diverse Structure Chaotic Systems[J]. Chin. Phys. Lett., 2011, 28(9): 120502
[5] WANG Xing-Yuan**, QIN Xue, XIE Yi-Xin . Pseudo-Random Sequences Generated by a Class of One-Dimensional Smooth Map[J]. Chin. Phys. Lett., 2011, 28(8): 120502
[6] WANG Xing-Yuan**, REN Xiao-Li . Chaotic Synchronization of Two Electrical Coupled Neurons with Unknown Parameters Based on Adaptive Control[J]. Chin. Phys. Lett., 2011, 28(5): 120502
[7] GUO Rong-Wei . Simultaneous Synchronization and Anti-Synchronization of Two Identical New 4D Chaotic Systems[J]. Chin. Phys. Lett., 2011, 28(4): 120502
[8] SHI Si-Hong, YUAN Yong, WANG Hui-Qi, LUO Mao-Kang** . Weak Signal Frequency Detection Method Based on Generalized Duffing Oscillator[J]. Chin. Phys. Lett., 2011, 28(4): 120502
[9] JIANG Nan**, CHEN Shi-Jian . Chaos Control in Random Boolean Networks by Reducing Mean Damage Percolation Rate[J]. Chin. Phys. Lett., 2011, 28(4): 120502
[10] ZHANG Ying-Qian, WANG Xing-Yuan** . A Parameter Modulation Chaotic Secure Communication Scheme with Channel Noises[J]. Chin. Phys. Lett., 2011, 28(2): 120502
[11] LI Hai-Yan**, HU Yun-An . Backstepping-Based Synchronization Control of Cross-Strict Feedback Hyper-Chaotic Systems[J]. Chin. Phys. Lett., 2011, 28(12): 120502
[12] SHANG Hui-Lin**, WEN Yong-Peng . Fractal Erosion of the Safe Basin in a Helmholtz Oscillator and Its Control by Linear Delayed Velocity Feedback[J]. Chin. Phys. Lett., 2011, 28(11): 120502
[13] ZHENG Bo-Jin, **, WANG Jian-Min, CHEN Gui-Sheng, JIANG Jian, SHEN Xian-Jun . Hidden Tree Structure is a Key to the Emergence of Scaling in the World Wide Web[J]. Chin. Phys. Lett., 2011, 28(1): 120502
[14] SHANG Hui-Lin. Control of Fractal Erosion of Safe Basins in a Holmes–Duffing System via Delayed Position Feedback[J]. Chin. Phys. Lett., 2011, 28(1): 120502
[15] DU Mao-Kang**, HE Bo, WANG Yong . Security Analysis of a Block Encryption Algorithm Based on Dynamic Sequences of Multiple Chaotic Systems[J]. Chin. Phys. Lett., 2011, 28(1): 120502
Viewed
Full text


Abstract