GENERAL |
|
|
|
|
A Hyperchaotic Attractor with Multiple Positive Lyapunov Exponents |
HU Guo-Si |
Deptment of Optics and Electronics, Yantai University, Shandong 264005 |
|
Cite this article: |
HU Guo-Si 2009 Chin. Phys. Lett. 26 120501 |
|
|
Abstract There are many hyperchaotic systems, but few systems can generate hyperchaotic attractors with more than three PLEs (positive Lyapunov exponents). A new hyperchaotic system, constructed by adding an approximate time-delay state feedback to a five-dimensional hyperchaotic system, is presented. With the increasing number of phase-shift units used in this system, the number of PLEs also steadily increases. Hyperchaotic attractors with 25 PLEs can be generated by this system with 32 phase-shift units. The sum of the PLEs will reach the maximum value when 23 phase-shift units are used. A simple electronic circuit, consisting of 16 operational amplifiers and two analogy multipliers, is presented for confirming hyperchaos of order 5, i.e., with 5 PLEs.
|
Keywords:
05.45.-a
05.45.Jn
05.45.Pq
|
|
Received: 09 January 2009
Published: 27 November 2009
|
|
PACS: |
05.45.-a
|
(Nonlinear dynamics and chaos)
|
|
05.45.Jn
|
(High-dimensional chaos)
|
|
05.45.Pq
|
(Numerical simulations of chaotic systems)
|
|
|
|
|
[1] Li Y X, Tang W K and Chen G R 2005 Int. J. Circ.Theor. Appl. 33 235 [2] Gao T G, Chen Z Q, Yuan Z Z and Chen G R 2006 Int. J.Mod. Phys. C 17 471 [3] Bao B C and Liu Z 2008 Chin. Phys. Lett. 252396 [4] Li Y X, Tang W K and Chen G R 2005 Int. J. Bifur.Chaos 15 3367 [5] Wang J Z, Chen Z Z and Yuan Z Z 2007 Int. J. Mod.Phys. C 18 1013 [6] Wang J Z, Chen Z Q, Chen G R and Yuan Z Z 2008 Int.J. Bifur. Chaos 18 3309 [7] Hu G S 2009 Int. J. Bifur. Chaos 19 651 [8] Hu G S and Yu B 2009 Int. J. Mod. Phys. C 20323 [9] Hu G S 2009 Acta Phys. Sin. 58 133 (inChinese) [10] Zhang Z, Chen G R and Yu S M 2009 Int. J. CircuitTheor. Appl. 37 31 [11] Barboza R 2007 Int. J. Bifur. Chaos 17 4285 [12] Li Y X, Chen G R and Tang W K 2005 IEEE Trans.Circuits Syst. I$\!$I 52 204 [13] Mital P B, Kumar U and Prasad R S 2008 Chin. Phys.Lett. 25 2803 [14] Cannas B and Cincotti S 2002 Int. J. Circuit Theor.Appl. 30 625 [15] Elwakil A S and Ozoguz S 2006 IEEE Trans. CircuitsSyst. I 53 1521 [16] Li Q D and Yang X S 2008 Int. J. Circ. Theor. Appl. 36 19 [17] Yanchuk S and Kapitaniak T 2001 Phys. Lett. A 290 139 [18] Cafagna D and Grassi G 2007 Int. J. Bifur. Chaos 17 209 [19] Cafagna D and Grassi G 2003 Int. J. Bifur. Chaos 13 2537 [20] Cincott S and Teglio A 2007 IEEE Trans. CircuitsSyst. I 54 1340 [21] Zhou Q, Chen Z Q and Yuan Z Z 2008 Chin. Phys.Lett. 25 3169 [22] Suzuki T and Saito T 1994 IEEE Trans. CircuitsSyst. I 41 876 [23] Takahashi Y, Nakano H and Saito T 2004 IEEE Trans.Circuits Syst. I$\!$I 51 468 [24] Thomas R, Basios V, Eiswirth M, Kruel T and Rossler O2004 Chaos 14 669 [25] Namajhas A, Pyragas K and Tamasevicius A 1995 Phys.Lett. A 201 42 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|