Chin. Phys. Lett.  2009, Vol. 26 Issue (12): 120501    DOI: 10.1088/0256-307X/26/12/120501
GENERAL |
A Hyperchaotic Attractor with Multiple Positive Lyapunov Exponents
HU Guo-Si
Deptment of Optics and Electronics, Yantai University, Shandong 264005
Cite this article:   
HU Guo-Si 2009 Chin. Phys. Lett. 26 120501
Download: PDF(763KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract There are many hyperchaotic systems, but few systems can generate hyperchaotic attractors with more than three PLEs (positive Lyapunov exponents). A new hyperchaotic system, constructed by adding an approximate time-delay state feedback to a five-dimensional hyperchaotic system, is presented. With the increasing number of phase-shift units used in this system, the number of PLEs also steadily increases. Hyperchaotic attractors with 25 PLEs can be generated by this system with 32 phase-shift units. The sum of the PLEs will reach the maximum value when 23 phase-shift units are used. A simple electronic circuit, consisting of 16 operational amplifiers and two analogy multipliers, is presented for confirming hyperchaos of order 5, i.e., with 5 PLEs.
Keywords: 05.45.-a      05.45.Jn      05.45.Pq     
Received: 09 January 2009      Published: 27 November 2009
PACS:  05.45.-a (Nonlinear dynamics and chaos)  
  05.45.Jn (High-dimensional chaos)  
  05.45.Pq (Numerical simulations of chaotic systems)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/26/12/120501       OR      https://cpl.iphy.ac.cn/Y2009/V26/I12/120501
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
HU Guo-Si
[1] Li Y X, Tang W K and Chen G R 2005 Int. J. Circ.Theor. Appl. 33 235
[2] Gao T G, Chen Z Q, Yuan Z Z and Chen G R 2006 Int. J.Mod. Phys. C 17 471
[3] Bao B C and Liu Z 2008 Chin. Phys. Lett. 252396
[4] Li Y X, Tang W K and Chen G R 2005 Int. J. Bifur.Chaos 15 3367
[5] Wang J Z, Chen Z Z and Yuan Z Z 2007 Int. J. Mod.Phys. C 18 1013
[6] Wang J Z, Chen Z Q, Chen G R and Yuan Z Z 2008 Int.J. Bifur. Chaos 18 3309
[7] Hu G S 2009 Int. J. Bifur. Chaos 19 651
[8] Hu G S and Yu B 2009 Int. J. Mod. Phys. C 20323
[9] Hu G S 2009 Acta Phys. Sin. 58 133 (inChinese)
[10] Zhang Z, Chen G R and Yu S M 2009 Int. J. CircuitTheor. Appl. 37 31
[11] Barboza R 2007 Int. J. Bifur. Chaos 17 4285
[12] Li Y X, Chen G R and Tang W K 2005 IEEE Trans.Circuits Syst. I$\!$I 52 204
[13] Mital P B, Kumar U and Prasad R S 2008 Chin. Phys.Lett. 25 2803
[14] Cannas B and Cincotti S 2002 Int. J. Circuit Theor.Appl. 30 625
[15] Elwakil A S and Ozoguz S 2006 IEEE Trans. CircuitsSyst. I 53 1521
[16] Li Q D and Yang X S 2008 Int. J. Circ. Theor. Appl. 36 19
[17] Yanchuk S and Kapitaniak T 2001 Phys. Lett. A 290 139
[18] Cafagna D and Grassi G 2007 Int. J. Bifur. Chaos 17 209
[19] Cafagna D and Grassi G 2003 Int. J. Bifur. Chaos 13 2537
[20] Cincott S and Teglio A 2007 IEEE Trans. CircuitsSyst. I 54 1340
[21] Zhou Q, Chen Z Q and Yuan Z Z 2008 Chin. Phys.Lett. 25 3169
[22] Suzuki T and Saito T 1994 IEEE Trans. CircuitsSyst. I 41 876
[23] Takahashi Y, Nakano H and Saito T 2004 IEEE Trans.Circuits Syst. I$\!$I 51 468
[24] Thomas R, Basios V, Eiswirth M, Kruel T and Rossler O2004 Chaos 14 669
[25] Namajhas A, Pyragas K and Tamasevicius A 1995 Phys.Lett. A 201 42
Related articles from Frontiers Journals
[1] K. Fakhar, A. H. Kara. The Reduction of Chazy Classes and Other Third-Order Differential Equations Related to Boundary Layer Flow Models[J]. Chin. Phys. Lett., 2012, 29(6): 120501
[2] ZHAI Liang-Jun, ZHENG Yu-Jun, DING Shi-Liang. Chaotic Dynamics of Triatomic Normal Mode Molecules[J]. Chin. Phys. Lett., 2012, 29(6): 120501
[3] NIU Yao-Bin, WANG Zhong-Wei, DONG Si-Wei. Modified Homotopy Perturbation Method for Certain Strongly Nonlinear Oscillators[J]. Chin. Phys. Lett., 2012, 29(6): 120501
[4] LIU Yan, LIU Li-Guang, WANG Hang. Study on Congestion and Bursting in Small-World Networks with Time Delay from the Viewpoint of Nonlinear Dynamics[J]. Chin. Phys. Lett., 2012, 29(6): 120501
[5] Paulo C. Rech. Dynamics in the Parameter Space of a Neuron Model[J]. Chin. Phys. Lett., 2012, 29(6): 120501
[6] YAN Yan-Zong, WANG Cang-Long, SHAO Zhi-Gang, YANG Lei. Amplitude Oscillations of the Resonant Phenomena in a Frenkel–Kontorova Model with an Incommensurate Structure[J]. Chin. Phys. Lett., 2012, 29(6): 120501
[7] LI Jian-Ping,YU Lian-Chun,YU Mei-Chen,CHEN Yong**. Zero-Lag Synchronization in Spatiotemporal Chaotic Systems with Long Range Delay Couplings[J]. Chin. Phys. Lett., 2012, 29(5): 120501
[8] JIANG Jun**. An Effective Numerical Procedure to Determine Saddle-Type Unstable Invariant Limit Sets in Nonlinear Systems[J]. Chin. Phys. Lett., 2012, 29(5): 120501
[9] FANG Ci-Jun,LIU Xian-Bin**. Theoretical Analysis on the Vibrational Resonance in Two Coupled Overdamped Anharmonic Oscillators[J]. Chin. Phys. Lett., 2012, 29(5): 120501
[10] WEI Du-Qu, LUO Xiao-Shu, ZHANG Bo. Noise-Induced Voltage Collapse in Power Systems[J]. Chin. Phys. Lett., 2012, 29(3): 120501
[11] LI Nian-Qiang, PAN Wei, YAN Lian-Shan, LUO Bin, XU Ming-Feng, TANG Yi-Long. Quantifying Information Flow between Two Chaotic Semiconductor Lasers Using Symbolic Transfer Entropy[J]. Chin. Phys. Lett., 2012, 29(3): 120501
[12] ZHENG Yong-Ai. Adaptive Generalized Projective Synchronization of Takagi-Sugeno Fuzzy Drive-response Dynamical Networks with Time Delay[J]. Chin. Phys. Lett., 2012, 29(2): 120501
[13] SUN Mei, CHEN Ying, CAO Long, WANG Xiao-Fang. Adaptive Third-Order Leader-Following Consensus of Nonlinear Multi-agent Systems with Perturbations[J]. Chin. Phys. Lett., 2012, 29(2): 120501
[14] REN Sheng, ZHANG Jia-Zhong, LI Kai-Lun. Mechanisms for Oscillations in Volume of Single Spherical Bubble Due to Sound Excitation in Water[J]. Chin. Phys. Lett., 2012, 29(2): 120501
[15] WANG Sha, YU Yong-Guang. Generalized Projective Synchronization of Fractional Order Chaotic Systems with Different Dimensions[J]. Chin. Phys. Lett., 2012, 29(2): 120501
Viewed
Full text


Abstract