Chin. Phys. Lett.  2009, Vol. 26 Issue (1): 018901    DOI: 10.1088/0256-307X/26/1/018901
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Dynamics of Symmetric Conserved Mass Aggregation Model on Complex Networks
HUA Da-Yin
Department of Physics, Ningbo University, Ningbo 315211
Cite this article:   
HUA Da-Yin 2009 Chin. Phys. Lett. 26 018901
Download: PDF(249KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We investigate the dynamical behaviour of the aggregation process in the symmetric conserved mass aggregation model under three different topological structures. The dispersion σ (t,L)=(∑i(mi0)2/L)1/2 is defined to describe the dynamical behaviour where ρ0 is the density of particle and mi is the particle number on a site. It is found numerically that for a regular lattice and a scale-free network, σ(t,L) follows a power-law scaling σ(t,L)tδ1 and σ (t,L)~tδ4 from a random initial condition to the stationary states, respectively. However, for a small-world network, there are two power-law scaling regimes, σ(t,L)~ tδ2 when t<T and σ(t,L)~ tδ3 when t>T. Moreover, it is found numerically that δ2 is near to δ1 for small rewiring probability q, and δ3 hardly changes with varying $q$ and it is almost the same as δ4. We speculate that the aggregation of the connection degree accelerates the mass aggregation in the initial relaxation stage and the existence of the long-distance interactions in the complex networks results in the acceleration of the mass aggregation when t>T for the small-world networks. We also show that the relaxation time τ follows a power-law scaling τ ~ Lz and σ (t,L) in the stationary state follows a power-law σ s(L)~Lα for three different structures.
Keywords: 89.75.Hc      05.20.-y      05.70.Fh     
Received: 12 July 2008      Published: 24 December 2008
PACS:  89.75.Hc (Networks and genealogical trees)  
  05.20.-y (Classical statistical mechanics)  
  05.70.Fh (Phase transitions: general studies)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/26/1/018901       OR      https://cpl.iphy.ac.cn/Y2009/V26/I1/018901
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
HUA Da-Yin
[1] Vicsek T and Family F 1984 Phys. Rev. Lett. 52 1669
[2] Parrish J K and Edelstein-Keshet L 1999 Science 284 99
[3] Evans M R 1996 Europhys. Lett. 36 13
[4] Chowdhury D, Santen L and Schadschneider A 2000 Phys.Rep. 329 199
[5] O'Loan O L, Evans M R and Cates M E 1998 Phys. Rev.E 58 1404
[6] Ke J H, Lin Z Q, Zheng Y Z, Chen X S and Lu W 2006 Phys. Rev. Lett. 97 028301
[7] Tang M, Liu Z H and Zhou J 2006 Phys. Rev. E 74 036101
[8] Noh J D 2005 Phys. Rev. E 72 056123
[9] Noh J D, Shim G M and Lee H 2005 Phys. Rev. Lett. 94 198701
[10] Morelli L G and Cerdeira H A 2004 Phys. Rev. E 69 051107
[11] Majumdar S N, Krishnamurthy S and Barma M 1998 Phys.Rev. Lett. 81 3691
[12] Kwon S, Lee S and Kim Y 2006 Phys. Rev. E 73056102
[13] Watts D J and Strogatz S H 1998 Nature 393440
[14] Barabasi A L and Albert R 1999 Science 286509
[15] Medvedyeva K, Holme P, Minnhagen P and Kim B J 2003 Phys. Rev. E 67 036118
Related articles from Frontiers Journals
[1] GE Hong-Xia,YU Jian,LO Siu-Ming**. A Control Method for Congested Traffic in the Car-Following Model[J]. Chin. Phys. Lett., 2012, 29(5): 018901
[2] QI Kai,TANG Ming**,CUI Ai-Xiang,FU Yan. The Slow Dynamics of the Zero-Range Process in the Framework of the Traps Model[J]. Chin. Phys. Lett., 2012, 29(5): 018901
[3] LIU Xu,XIE Zheng,YI Dong-Yun**. Community Detection by Neighborhood Similarity[J]. Chin. Phys. Lett., 2012, 29(4): 018901
[4] LI Ping, ZHANG Jie, XU Xiao-Ke, SMALL Michael. Dynamical Influence of Nodes Revisited: A Markov Chain Analysis of Epidemic Process on Networks[J]. Chin. Phys. Lett., 2012, 29(4): 018901
[5] XIE Zheng, YI Dong-Yun, OUYANG Zhen-Zheng, LI Dong. Hyperedge Communities and Modularity Reveal Structure for Documents[J]. Chin. Phys. Lett., 2012, 29(3): 018901
[6] TIAN Liang, LIN Min. Relaxation of Evolutionary Dynamics on the Bethe Lattice[J]. Chin. Phys. Lett., 2012, 29(3): 018901
[7] REN Xue-Zao, YANG Zi-Mo, WANG Bing-Hong, ZHOU Tao. Mandelbrot Law of Evolving Networks[J]. Chin. Phys. Lett., 2012, 29(3): 018901
[8] ZHU Zi-Qi, JIN Xiao-Ling, HUANG Zhi-Long. Search for Directed Networks by Different Random Walk Strategies[J]. Chin. Phys. Lett., 2012, 29(3): 018901
[9] SUN Mei, CHEN Ying, CAO Long, WANG Xiao-Fang. Adaptive Third-Order Leader-Following Consensus of Nonlinear Multi-agent Systems with Perturbations[J]. Chin. Phys. Lett., 2012, 29(2): 018901
[10] Zarita Zainuddin, Lim Eng Aik**. Intelligent Exit-Selection Behaviors during a Room Evacuation[J]. Chin. Phys. Lett., 2012, 29(1): 018901
[11] GE Hong-Xia, WU Shu-Zhen, CHENG Rong-Jun, LO Siu-ming** . Theoretical Analysis of a Modified Continuum Model[J]. Chin. Phys. Lett., 2011, 28(9): 018901
[12] XU Guo-Fu**, TONG Dian-Min . Non-Markovian Effect on the Classical and Quantum Correlations[J]. Chin. Phys. Lett., 2011, 28(6): 018901
[13] SUN Wei-Gang, , CAO Jian-Ting, WANG Ru-Bin** . Approach of Complex Networks for the Determination of Brain Death[J]. Chin. Phys. Lett., 2011, 28(6): 018901
[14] LI Jun, WU Jun**, LI Yong, DENG Hong-Zhong, TAN Yue-Jin** . Optimal Attack Strategy in Random Scale-Free Networks Based on Incomplete Information[J]. Chin. Phys. Lett., 2011, 28(6): 018901
[15] SHANG Yi-Lun . Local Natural Connectivity in Complex Networks[J]. Chin. Phys. Lett., 2011, 28(6): 018901
Viewed
Full text


Abstract