Original Articles |
|
|
|
|
Reversible Carriers Tunnelling in Asymmetric Coupled InGaN/GaN Quantum Wells |
PEI Xiao-Jiang1, GUO Li-Wei1, WANG Yang1, WANG Xiao-Hui1, JIA Hai-Qiang1, CHEN Hong1, ZHOU Jun-Ming1, WANG Li2, Tamai N2 |
1Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, PO Box 603, Beijing 1001902Department of Chemistry, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337, Japan |
|
Cite this article: |
PEI Xiao-Jiang, GUO Li-Wei, WANG Yang et al 2008 Chin. Phys. Lett. 25 3470-3473 |
|
|
Abstract Temperature-dependent photoluminescence (PL) and time resolved photoluminescence (TRPL) are performed to study the PL characteristics and carrier transfer mechanism in asymmetric coupled InGaN/GaN multiple quantum wells (AS-QWs). Our results reveal that abnormal carrier tunnelling from the wide quantum well (WQW) to the narrow quantum well (NQW) is observed at temperature higher than about 100K, while a normal carrier tunnelling from the NQW to the WQW is observed at temperature lower than 100K. The reversible carrier tunnelling between the two QWs makes it possible to explore new types of temperature sensitive emission devices. It is shown that PL internal quantum efficiency (IQE) of the NQW is enhanced to about 46% due to the assistant of the abnormal carrier tunnelling.
|
Keywords:
81.15.Gh
78.55.Cr
82.20.Xr
|
|
Received: 13 May 2008
Published: 29 August 2008
|
|
PACS: |
81.15.Gh
|
(Chemical vapor deposition (including plasma-enhanced CVD, MOCVD, ALD, etc.))
|
|
78.55.Cr
|
(III-V semiconductors)
|
|
82.20.Xr
|
(Quantum effects in rate constants (tunneling, resonances, etc.))
|
|
|
|
|
[1] Liu H W et al 1989 Appl. Phys. Lett. 54 2082 [2] Feng J M et al 1997 Phys. Status Solidi B 204412 [3] Alexander M G W et al 1990 Phys. Rev. B 4112295 [4] Oberli D Y, Shah J, Damen T C, Kuo J M, Henry J E, Lary Jand Goodnick S M 1990 Appl. Phys. Lett. 56 1239 [5] Levi D H et al 1991 Phys. Rev. B 45 4274 [6] Matsusue T et al 1990 Phys. Rev. B 42 5719 [7] Tada T et al 1988 J. Appl Phys. 63 5491 [8] Alexander M G W et al 1989 Appl. Phys. Lett. 55 885 [9] Leo K et al 1990 Phys. Rev. B 42 7065 [10] Nido M et al 1990 Phys. Rev. B 43 1839 [11] Roussignol P et al 1991 Phys. Rev. B 44 8873 [12] Wang Y et al 2007 Appl. Phys. Lett. 91 061902 [13] Kash J A et al 1984 Appl. Phys. Lett. 46 173 [14] Norris T B et al 1988 Appl. Phys. Lett. 54 60 [15] Oberli D Y et al 1989 Phys. Rev. B 40 3028 [16] Jackson M K et al 1989 Appl. Phys. Lett. 54552 [17] Nido M, Alexander M G W, R\"{uhle W W, Schweizer T andK\"{ohler K 1990 Appl. Phys. Lett. 56 355 [18] Sawaki N et al 1989 Appl. Phys. Lett. 55 1996 [19] Leo K et al 1990 Appl. Phys. Lett. 56 2031 [20] Akiyama H et al 1994 Phys. Rev. Lett. 72 924 [21] Lefebvre P et al 2002 Phys. Rev. B 66 195330 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|