Chin. Phys. Lett.  2008, Vol. 25 Issue (9): 3385-3388    DOI:
Original Articles |
Influence of Width of Left Well on Intersubband Transitions in AlxGa1-x N/GaN Double Quantum Wells
LEI Shuang-Ying1, SHEN Bo2, ZHANG Guo-Yi2
1Key Laboratory of MEMS of Ministry of Education, Southeast University, Nanjing 2100962State Key Laboratory of Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, Beijing 100871
Cite this article:   
LEI Shuang-Ying, SHEN Bo, ZHANG Guo-Yi 2008 Chin. Phys. Lett. 25 3385-3388
Download: PDF(151KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Influence of width of left well in AlxGa1-xN/GaN double quantum wells (DQWs) on absorption coefficients and wavelengths of the intersubband transitions (ISBTs) is investigated by solving the Schrödinger and Poisson equations self-consistently. When the width of left well is 1.79nm, three-energy-level DQWs are realized. The ISBT between the first odd and second odd order subbands (the 1odd-2odd ISBT) has a comparable absorption coefficient with the 1 odd-2even ISBT. Their wavelengths are located at 1.3 and 1.55μm, respectively. When the width of left well is 1.48nm, a four-energy-level DQWs is realized. The calculated results have a possible application to ultrafast two-colour optoelectronic devices operating within the optical communication wavelength range

Keywords: 73.21.Fg      72.80.Ey      03.65.Ge     
Received: 18 June 2008      Published: 29 August 2008
PACS:  73.21.Fg (Quantum wells)  
  72.80.Ey (III-V and II-VI semiconductors)  
  03.65.Ge (Solutions of wave equations: bound states)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2008/V25/I9/03385
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LEI Shuang-Ying
SHEN Bo
ZHANG Guo-Yi
[1] Kishino K, Kikuchi A, Kanazawa H and Tachibana T 2002 Appl. Phys. Lett. 81 1234
[2] Gmachl C, Frolov S V, Ng H M, Chu S N G and Cho A Y 2001 Electron. Lett. 37 378
[3] Hamazaki J, Matsui S, Kunugita H, Ema K, Kanazawa H,Tachibana T, Kikuchi A and Kishino K 2004 Appl. Phys. Lett. 84 1102
[4] Suzuki N and Iizuka N 1999 Jpn. J. Appl. Phys. 36 3222
[5] Heber J D, Gmachl C, Ng H M and Cho A Y 2002 Appl.Phys. Lett. 81 1237
[6] Lei S Y, Shen B and Zhang G Y 2006 Chin. Phys. Lett. 23 1574
[7] Chi Y M and Shi J J 2007 Chin. Phys. Lett. 242376
[8] Gmachl C, Ng H M and Cho A Y 2001 Appl. Phys. Lett. 79 1590
[9] Liu H C, Song C Y, Wasilewski Z R, SpringThorpe A J, Cao JC, Dharma-Wardana C, Aers G C, Lockwood D J and Gupta J A 2003 Phys. Rev. Lett. 90 077402
[10] Yoshida H, Mozume T, Nishimura T and Wada O 1998 Electron. Lett. 34 913
[11] Lei S Y, Shen B and Zhang G Y 2006 Chin. Phys.Lett. 23 450
[12] Hofstetter D, Schad S S, Wu H, Schaff W J and Eastman L F2003 Appl. Phys. Lett. 83 572
[13] Iizuka N, Kaneko K, Suzuki N, Asano T, Noda S and Wada O2000 Appl. Phys. Lett. 77 648
[14] Lei S Y, Shen B and Zhang G Y 2008 Acta Phys. Sin. 57 2386
[15] Suzuki N and Iizuka N 1999 Pacific Rim Conf. onLasers and Electro-Optics (Seoul, Korea) p 310
[16] de Paiva R, Alves J L A, Nogueira R A, de Oliveira C,Alves H W L, Scolfaro L M R and Leite J R 2002 Mater. Sci.Eng. B 93 2
[17] Hedin L and Lundqvist B I 1971 J. Phys. C 42064
Related articles from Frontiers Journals
[1] Ramesh Kumar, Fakir Chand. Energy Spectra of the Coulomb Perturbed Potential in N-Dimensional Hilbert Space[J]. Chin. Phys. Lett., 2012, 29(6): 3385-3388
[2] Akpan N. Ikot. Solutions to the Klein–Gordon Equation with Equal Scalar and Vector Modified Hylleraas Plus Exponential Rosen Morse Potentials[J]. Chin. Phys. Lett., 2012, 29(6): 3385-3388
[3] NIU Yao-Bin, WANG Zhong-Wei, DONG Si-Wei. Modified Homotopy Perturbation Method for Certain Strongly Nonlinear Oscillators[J]. Chin. Phys. Lett., 2012, 29(6): 3385-3388
[4] A. I. Arbab. Transport Properties of the Universal Quantum Equation[J]. Chin. Phys. Lett., 2012, 29(3): 3385-3388
[5] WANG Jun-Min. Periodic Wave Solutions to a (3+1)-Dimensional Soliton Equation[J]. Chin. Phys. Lett., 2012, 29(2): 3385-3388
[6] Hassanabadi Hassan, Yazarloo Bentol Hoda, LU Liang-Liang. Approximate Analytical Solutions to the Generalized Pöschl–Teller Potential in D Dimensions[J]. Chin. Phys. Lett., 2012, 29(2): 3385-3388
[7] CAO Xiao-Long, WANG Yu-Ye, XU De-Gang, **, ZHONG Kai, LI Jing-Hui, LI Zhong-Yang, ZHU Neng-Nian, YAO Jian-Quan,. THz-Wave Difference Frequency Generation by Phase-Matching in GaAs/AlxGa1−xAs Asymmetric Quantum Well[J]. Chin. Phys. Lett., 2012, 29(1): 3385-3388
[8] CHEN Qing-Hu, **, LI Lei, LIU Tao, WANG Ke-Lin. The Spectrum in Qubit-Oscillator Systems in the Ultrastrong Coupling Regime[J]. Chin. Phys. Lett., 2012, 29(1): 3385-3388
[9] WANG Jun-Min**, YANG Xiao . Theta-function Solutions to the (2+1)-Dimensional Breaking Soliton Equation[J]. Chin. Phys. Lett., 2011, 28(9): 3385-3388
[10] M. R. Setare, *, D. Jahani, ** . Quantum Hall Effect and Different Zero-Energy Modes of Graphene[J]. Chin. Phys. Lett., 2011, 28(9): 3385-3388
[11] XIE Zi-Li**, ZHANG Rong, LIU Bin, XIU Xiang-Qian, SU Hui, LI Yi, HUA Xue-Mei, ZHAO Hong, CHEN Peng, HAN Ping, SHI Yi, ZHENG You-Dou . Growth and Properties of Blue and Amber Complex Light Emitting InGaN/GaN Multi-Quantum Wells[J]. Chin. Phys. Lett., 2011, 28(8): 3385-3388
[12] LIU Sheng-Hou, CAI Yong**, GONG Ru-Min, WANG Jin-Yan, ZENG Chun-Hong, SHI Wen-Hua, FENG Zhi-Hong, WANG Jing-Jing, YIN Jia-Yun, Cheng P. Wen, QIN Hua, ZHANG Bao-Shun . Enhancement-Mode AlGaN/GaN High Electron Mobility Transistors Using a Nano-Channel Array Structure[J]. Chin. Phys. Lett., 2011, 28(7): 3385-3388
[13] DING Bin-Beng, PAN Feng, FENG Zhe-Chuan, FA Tao, CHENG Feng-Feng, YAO Shu-De** . Structural Analysis of In xGa1−xN/GaN MQWs by Different Experimental Methods[J]. Chin. Phys. Lett., 2011, 28(7): 3385-3388
[14] Sur S., Ö, ztürk Z., Ö, zta&scedil, M.**, Bedir M., Ö, zdemir Y. . Effect of Water Concentration on the Characterization of Sprayed Cd0.5Zn0.5S Films[J]. Chin. Phys. Lett., 2011, 28(6): 3385-3388
[15] CHEN Yi-Xin**, SHEN Guang-Di, ZHU Yan-Xu, GUO Wei-Ling, LI Jian-Jun . Efficiency-enhanced AlGaInP Light-Emitting Diodes with Thin Window Layers and Coupled Distributed Bragg Reflectors[J]. Chin. Phys. Lett., 2011, 28(6): 3385-3388
Viewed
Full text


Abstract