Chin. Phys. Lett.  2008, Vol. 25 Issue (9): 3372-3374    DOI:
Original Articles |
Effect of Fe on Martensitic Transformation of NbRu High-Temperature Shape Memory Alloys: Experimental and Theoretical Study
TAN Chang-Long1, TIAN Xiao-Hua1,2, CAI Wei2
1Department of Applied Physics, Harbin University of Science and Technology, Harbin 1500802School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001
Cite this article:   
TAN Chang-Long, TIAN Xiao-Hua, CAI Wei 2008 Chin. Phys. Lett. 25 3372-3374
Download: PDF(431KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Effect of Fe on the martensitic transformation of NbRu high-temperature shape memory alloys is investigated by the experiments and first-principles calculations. The results show that Fe is predicted to occupy Ru sites. The addition of Fe increases the stability of Nb50Ru50-xFex β phase, leading to the significant decrease of the β to β martensitic transformation temperature. In addition, the mechanism of the Fe alloying effect is explained on the basis of the electronic structure.

Keywords: 71.20.Lp      81.30.Kf     
Received: 04 June 2008      Published: 29 August 2008
PACS:  71.20.Lp (Intermetallic compounds)  
  81.30.Kf (Martensitic transformations)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2008/V25/I9/03372
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
TAN Chang-Long
TIAN Xiao-Hua
CAI Wei
[1] Wayman C M 1992 Prog. Mater. Sci. 36 203
[2] Otsuka K, Ren X 2005 Prog. Mater. Sci. 50511
[3] Otsuka K, X. Ren 1999 Intermetallics 7 511
[4] Beyer J et al 1995 Mater. Res. Soc. Symp. Proc. 360 443
[5] Otsuka K, Wayman C M 1998 Shape Memory Materials(Cambridge: Cambridge University Press)
[6] Firstov G S et al 2004 Mater. Sci. Eng. A 3782
[7] Chastaing K et al 2008 Mater. Sci. Eng. A 481-452 702
[8] Donkersloot H C et al 1970 J. Less-Common Met. 20 83
[9] Das B K et al 1970 Mater. Sci. Eng. 6 248
[10] Scherling M A et al 1970 Metall. Trans. 13273
[11] Das B and Lieberman D S 1975 Acta Metall. 23579
[12] Das B et al 1976 Acta Metall. 24 37
[13] Fonda R W et al 1998 Scripta Mater. 39 1031
[14] Fonda R W, Vandermeer R A 1997 Philos. Mag. A 76 119
[15] Fonda R W et al 1999 Mater. Sci. Eng. A 273-275 275
[16] Gao X, Zheng Y F, Cai W, Zhang S, Zhao L C 2004 J.Mater. Sci. Technol. 20 97
[17] Lindquist P G, Wayman C M, Duering T W 1990 Engineering Aspects of Shape Memory Alloys (New York:Butterworth-Heinemann)
[18] Chen F et al 2005 J. Mater. Sci. 40 219
[19] Segall M et al 2002 J. Phys. Condens. Matter 14 2717
[20] Vanderbilt D 1990 Phys. Rev. B 41 7892
[21] Shapiro S M et al 2006 Phys. Rev. B 73 214114
[22] Chen J et al 2006 Appl. Phys. Lett. 89 231921
Related articles from Frontiers Journals
[1] CHEN Jie, LI Yan, SHANG Jia-Xiang, XU Hui-Bin. Site Preference and Alloying Effect of Excess Ni in Ni-Mn-Ga Shape Memory Alloys[J]. Chin. Phys. Lett., 2009, 26(4): 3372-3374
[2] LI Guan-Nan, JIN Ying-Jiu. First-Principles Study on the Half-Metallicity of Half-Heusler Alloys: XYZ (X=Mn, Ni; Y=Cr, Mn; Z=As, Sb)[J]. Chin. Phys. Lett., 2009, 26(10): 3372-3374
[3] WANG Ping, ZHAO Jian-Bo, TANG Shao-Qiang. Dynamic Simulation for Hysteresis in Shape Memory Alloy under Tension[J]. Chin. Phys. Lett., 2008, 25(5): 3372-3374
[4] WANG Jing-Min, WANG Yu-Fei, JIANG Cheng-Bao, XU Hui-Bin. Magnetostrain and Magnetization of the Ni50Mn27.5Ga22.5 Single Crystal[J]. Chin. Phys. Lett., 2006, 23(5): 3372-3374
[5] TAN Chang-Long, CAI Wei, ZHU Jing-Chuan. First-Principles Study on Elastic Properties and Electronic Structures of Ti-Based Binary and Ternary Shape Memory Alloys[J]. Chin. Phys. Lett., 2006, 23(10): 3372-3374
[6] GUO Shi-Hai, ZHANG Yang-Huan, LI Jian-Liang, QI Yan, QUAN Bai-Yun, WANG Xin-Lin. Magnetic-Field-Induced Strains of Bonded Ni--Mn--Ga Melt-Spun Ribbons[J]. Chin. Phys. Lett., 2006, 23(1): 3372-3374
[7] ZHANG Shao-Ying, YAO Jin-Lei, ZHANG Li-Gang, LI Yun-Bao, ZHAO Tong-Yun, SHEN Bao-Gen. Magnetic Transitions and Magnetoresistance of Y1-xDyxMn6Sn6 ( x = 0.2 and 0.3)[J]. Chin. Phys. Lett., 2003, 20(6): 3372-3374
[8] ZHANG Li-Gang, WANG Ru-Wu, LI-Lu, ZHANG Shao-Ying, YAO Jin-Lei, SHEN Bao-Gen. Magnetic Properties and Magnetoresistance of HfFe6Ge6-Type Er1-xGdxMn6Ge6 and Ho1-xGdxMn6Ge6 (0.2 ≤ x ≤ 0.9) Compounds[J]. Chin. Phys. Lett., 2003, 20(6): 3372-3374
[9] ZHAO Wei-Ren, LI Jian-Liang, QI Yan, WANG Xin-Lin. Behaviour of Internal Stress in Melt-Spun Ni-Mn-Ga Ribbons[J]. Chin. Phys. Lett., 2003, 20(3): 3372-3374
[10] ZHANG Li-Gang, LI Yun-Bao, ZHANG Shao-Ying, YAO Jin-Lei, SHEN Bao-Gen. Magnetic Properties and Magnetoresistance Effect of YMn6Sn6-xCrx (x = 0-0.8) Compounds [J]. Chin. Phys. Lett., 2002, 19(7): 3372-3374
[11] QU Jing-Ping, WANG Wen-Hong, MENG Fan-Bin, LIU Bao-Dan, LIU Zhu-Hong, CHEN Jing-Lan, LI Yang-Xian, WU Guang-Heng. Magnetocrystalline Anisotropy and Magnetoelasticity of Preferentially Oriented Martensitic Variants in Ni52Mn24Ga24 Single Crystals[J]. Chin. Phys. Lett., 2002, 19(4): 3372-3374
[12] ZHU Zi-Zhong, YE Yi-Ying. Structure-Dependent Electronic and Optical Properties of the Martensitic Alloys TiAu[J]. Chin. Phys. Lett., 2002, 19(3): 3372-3374
[13] FENG Xue, FANG Dai-Ning, HWANG Keh-Chih. Mechanical and Magnetostrictive Properties of Fe-Doped Ni52Mn24Ga24 Single Crystals[J]. Chin. Phys. Lett., 2002, 19(10): 3372-3374
[14] LIANG Ting, XU Hui-Bin, JIANG Cheng-Bao, GONG Sheng-Kai. Preparation and Properties of the Ni2MnGa Magnetic Shape Memory Alloy[J]. Chin. Phys. Lett., 2000, 17(4): 3372-3374
[15] XU Huibin. Temperature Hysteresis in Shape Memory Alloys[J]. Chin. Phys. Lett., 1991, 8(5): 3372-3374
Viewed
Full text


Abstract