Original Articles |
|
|
|
|
First-Principles Calculations of Structures and Electronic Properties of Solid Pentaerythritol under Pressure |
LU Lai-Yu1,2, WEI Dong-Qing2, CHEN Xiang-Rong1,4, JI Guang-Fu3 |
1Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 6100652College of Life Science and Biotechnology, Shanghai Jiaotong University, Shanghai 2002403Laboratory for Shock Wave and Detonation Physics Research, Institute of Fluid Physics, Chinese Academy of Engineering Physics, Mianyang 6219004International Centre for Materials Physics, Chinese Academy of Sciences, Shenyang 110016 |
|
Cite this article: |
LU Lai-Yu, WEI Dong-Qing, CHEN Xiang-Rong et al 2008 Chin. Phys. Lett. 25 3368-3371 |
|
|
Abstract Structures and electronic properties of the pentaerythritol (PE) crystal under volume compression up to 0.85V0 are studied by E-V fitting method using density functional theory (DFT). The compression dependences of the cell volumes, lattice constants, and molecular geometries of solid PE are presented and discussed. It is found that the solid PE presents anisotropy along a- and c-axes, and the c axis is the most compressible. Decreasing anisotropy ratio (c/a) with elevating compression suggests an enhancement of the vdW interaction with increasing compression. The C--C and C--H bonds are significantly reduced under compression, which may be related to the sensitivity. The solid PE has indirect band gap (X-G) in the range of the researched compression and the band gap is decreased with compression.
|
Keywords:
71.15.Mb
71.20.Rv
91.60.Gf
73.20.At
|
|
Received: 16 June 2008
Published: 29 August 2008
|
|
PACS: |
71.15.Mb
|
(Density functional theory, local density approximation, gradient and other corrections)
|
|
71.20.Rv
|
(Polymers and organic compounds)
|
|
91.60.Gf
|
(High-pressure behavior)
|
|
73.20.At
|
(Surface states, band structure, electron density of states)
|
|
|
|
|
[1] Hvoslef J 1958 Acta Cryst. 11 383 [2] Eilerman D and Rudman R 1979 Acta Cryst. B 352458 [3] Ladd M F C 1979 Acta Cryst. B 35 2375 [4] Semmingsen D 1988 Acta Chem. Scand. A 42 279 [5] Frolov A P, Vereshchagin L F and Rodionov K P 1962 Fiz. Tverd. Tela. 4 1608 [6] Garg N, Sharma S M and Sikka S K 2002 Solid StatePhys. 45 43 [7] Katrusiak A 1995 Acta Cryst. B 51 873 [8] Bhattacharya T and Sharma S M 2002 J. Phys.: Condens.Matter 14 10367 [9] Park T R, Dreger Z A and Gupta Y M 2004 J. Phys.Chem. B 108 3174 [10] Dreger Z A, Gupta Y M, Yoo C S and Cynn H 2005 J.Phys. Chem. B 109 22581 [11] Deb S K, Banerji A, Kshirsagar R J, Sharma S M, Dumas P,Marin T, Chervin J C and Canny B 2006 Infrared Phys.Technol. 49 82 [12] Ramamoorthy P, Rajaram R K and Krishnamurthy N 2001 Cryst. Res. Technol. 36 169 [13] Perger W F, Vutukuri S, Dreger Z A, Gupta Y M andFlurchick K 2006 Chem. Phys. Lett. 422 397 [14] Hartree D R 1928 Proc. Cam. Phil. Soc. 24 426 Fock V 1930 Z. Physik. 61 126 [15] Becke A D 1993 J. Chem. Phys. 98 5648 [16] Lian D, Lu L Y, Wei D Q, Zhang Q M, Gong Z Z and Guo YX 2008 Chin. Phys. Lett. 25 899 [17] Payne M C, Teter M P, Allen D C, Arias T A andJoannopoulos J D 1992 Rev. Mod. Phys. 64 1045 [18] Milman V, Winkler B, White J A, Packard C J, Payne M C,Akhmatskaya E V and Nobes R H 2000 Int. J. Quantum Chem. 77 895 [19] Vanderbilt D 1990 Phys. Rev. B 41 7892 [20] Cerperley D M and Alder B 1980 J. Phys. Rev.Lett. 45 566 [21] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188 [22] Fischer T H and Almlof J 1992 J. Phys. Chem. 96 9768 [23] Perdew J P, Burke K and Wang Y 1992 Phys. Rev. B 45 13244 [24] von Barth U and Hedin L 1972 J. Phys. C: Solid State Phys. 5 1629 [25] Perger W F 2003 Chem. Phys. Lett. 368 319 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|