Chin. Phys. Lett.  2008, Vol. 25 Issue (9): 3223-3226    DOI:
Original Articles |
Tightly Focusing of Circularly Polarized Vortex Beams through a Uniaxial Birefringent Crystal
RAO Lian-Zhou1, WANG Zong-Chi1, ZHENG Xiao-Xia2
1Department of Physics and Electromechanical Engineering, Sanming University, Sanming 3650042Library, Sanming University, Sanming 365004
Cite this article:   
RAO Lian-Zhou, WANG Zong-Chi, ZHENG Xiao-Xia 2008 Chin. Phys. Lett. 25 3223-3226
Download: PDF(1342KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Under the approximation of small birefringence, the properties of circularly polarized vortex beams tightly focused through a uniaxial birefringent crystal are studied. With the proper combination of the topological charge and the birefringence, the small focus, the small bottle beam and the inverse c-shaped intensity profile can be obtained. The effects of the focal shift and the Strehl ratio on the birefringence are analysed. A relation between angular momentum (included spin and orbital) and topological Pancharatnam charge is also presented.

Keywords: 42.25.Lc      42.25.Fx     
Received: 15 March 2008      Published: 29 August 2008
PACS:  42.25.Lc (Birefringence)  
  42.25.Fx (Diffraction and scattering)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2008/V25/I9/03223
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
RAO Lian-Zhou
WANG Zong-Chi
ZHENG Xiao-Xia
[1] Soskin M S and Vasnetsov M V 2001 Prog. Opt. 42 219
[2] Schouten H F et al 2003 Opt. Lett. 28 968
[3] Zhao C L et al 2006 Chin. Phys. Lett. 23 2411
[4] Rao L Z and Pu J X 2007 Chin. Phys. Lett. 241252
[5] Niv A et al 2005 Opt. Lett. 30 2933
[6] Zhan Q 2006 Opt. Lett. 31 867
[7] Bomzon Z et al 2002 Opt. Lett. 27 285
[8] Alejo M et al 2006 J. Opt. Soc. Am. A 23 926
[9] Ciattoni G et al 2003 Opt. Commun. 220 33
[10] Deng D et al 2008 Opt. Commun. 281 202
[11] Bernacki B E and Mansuripur M 1993 Appl. Opt. 32 6547
[12] Zhang Z, Pu J and Wang X 2008 Opt. Lett. 3349
[13] Youngworth K S and Brown T G 2000 Opt. Express 7 77
[14] Lerman G M and Levy U 2007 Opt. Lett. 32 2194
[15] Walker E P and Milster T D 2001 Proc. SPIE Int. Soc.Opt. Eng. 4443 73
[16] Rao L Z and Pu J X 2007 Chin. Phys. Lett. 243412
[17] Stallinga S 2001 J. Opt. Soc. Am. A 18 2846
[18] Kuga T et al 1997 Phys. Rev. Lett. 78 4713
[19] Born M and Wolf E 1999 Principles of Optics 7thedn (Cambridge: Cambridge University Press)
[20] Gu M 2000 Advanced Optical Imaging Theory (Berlin:Springer)
[21] Niv A et al 2006 Opt. Express 14 4028
[22] Bomzon Z et al 2006 Appl. Phys. Lett. 89241104
[23] O'Neil A T et al 2002 Phys. Rev. Lett. 88 053601
Related articles from Frontiers Journals
[1] YAN Qin,LU Jian,NI Xiao-Wu**. Measurement of the Velocities of Nanoparticles in Flowing Nanofluids using the Zero-Crossing Laser Speckle Method[J]. Chin. Phys. Lett., 2012, 29(4): 3223-3226
[2] LI Cheng-Guo, GAO Yong-Hao, XU Xing-Sheng. Angular Tolerance Enhancement in Guided-Mode Resonance Filters with a Photonic Crystal Slab[J]. Chin. Phys. Lett., 2012, 29(3): 3223-3226
[3] KONG Qi, SHI Qing-Fan, YU Guang-Ze, ZHANG Mei. A New Method for Electromagnetic Time Reversal in a Complex Environment[J]. Chin. Phys. Lett., 2012, 29(2): 3223-3226
[4] MA Jian-Yong, FAN Yong-Tao. Guided Mode Resonance Transmission Filters Working at the Intersection Region of the First and Second Leaky Modes[J]. Chin. Phys. Lett., 2012, 29(2): 3223-3226
[5] SHI Fan, LI Wei, WANG Pi-Dong, LI Jun, WU Qiang, WANG Zhen-Hua, ZHANG Xin-Zheng**. Optically Controlled Coherent Backscattering from a Water Suspension of Positive Uniaxial Microcrystals[J]. Chin. Phys. Lett., 2012, 29(1): 3223-3226
[6] GUO Yu-Bing, CHEN Yong-Hai**, XIANG Ying, QU Sheng-Chun, WANG Zhan-Guo . Photorefractive Effect of a Liquid Crystal Cell with a ZnO Nanorod Doped in Only One PVA Layer[J]. Chin. Phys. Lett., 2011, 28(9): 3223-3226
[7] BAI Yi-Ming**, WANG Jun, CHEN Nuo-Fu, YAO Jian-Xi, ZHANG Xing-Wang, YIN Zhi-Gang, ZHANG Han, HUANG Tian-Mao . Dipolar and Quadrupolar Modes of SiO2/Au Nanoshell Enhanced Light Trapping in Thin Film Solar Cells[J]. Chin. Phys. Lett., 2011, 28(8): 3223-3226
[8] ZHAO Yan-Zhong**, SUN Hua-Yan, ZHENG Yong-Hui . An Approximate Analytical Propagation Formula for Gaussian Beams through a Cat-Eye Optical Lens under Large Incidence Angle Condition[J]. Chin. Phys. Lett., 2011, 28(7): 3223-3226
[9] ZHANG Jin-Long, ** . Analysis of Optical Vortices in the Near Field of a Thin Metal Film[J]. Chin. Phys. Lett., 2011, 28(5): 3223-3226
[10] LIU Hong-Wei**, KAN Qiang, WANG Chun-Xia, HU Hai-Yang, XU Xing-Sheng, CHEN Hong-Da . Light Extraction Enhancement of GaN LED with a Two-Dimensional Photonic Crystal Slab[J]. Chin. Phys. Lett., 2011, 28(5): 3223-3226
[11] XU Qi-Yuan**, LIU Zheng-Tang, LI Yang-Ping, WU Qian, ZHANG Shao-Feng . Antireflective Characteristics of Sub-Wavelength Periodic Structure with Square Hole[J]. Chin. Phys. Lett., 2011, 28(2): 3223-3226
[12] SUN Ji-Yu, **, XIE Hong . Recurrence Formulas for the Mie Series[J]. Chin. Phys. Lett., 2011, 28(10): 3223-3226
[13] LIN Zhi-Wei**, XU Xin, ZHANG Xiao-Juan, FANG Guang-You . An Inverse Electromagnetic Scattering Method for One-Dimensional Inhomogeneous Media[J]. Chin. Phys. Lett., 2011, 28(1): 3223-3226
[14] LIN Zhi-Wei**, XU Xin, ZHANG Xiao-Juan, FANG Guang-You . Electromagnetic Scattering and Inverse Scattering of Layered Media with a Slightly Rough Surface[J]. Chin. Phys. Lett., 2011, 28(1): 3223-3226
[15] LU Yun-Qing, LI Pei-Li, ZHENG Jia-Jin. The Axial Spatial Evolution of Optical Field near the Talbot Plane of a Grating[J]. Chin. Phys. Lett., 2010, 27(9): 3223-3226
Viewed
Full text


Abstract