Original Articles |
|
|
|
|
Concentration of Unknown Atomic Entangled States via Entanglement Swapping through Raman Interaction |
ZOU Jin-Hua, HU Xiang-Ming |
Department of Physics, Huazhong Normal University, Wuhan 430079 |
|
Cite this article: |
ZOU Jin-Hua, HU Xiang-Ming 2008 Chin. Phys. Lett. 25 3142-3145 |
|
|
Abstract We show that entanglement concentration of unknown atomic entangled states is achieved via the implementation of entanglement swapping based on Raman interaction in cavity QED. A maximally entangled state is obtained from a pair of partially entangled states probabilistically. Due to Raman interaction of two atoms with a cavity mode and an external driving field, the influence of atomic spontaneous emission has been eliminated. Because of the virtual excitation of the cavity mode, the decoherence of cavity decay and thermal field is neglected.
|
Keywords:
03.67.Mn
03.65.Ud
42.50.Dv
|
|
Received: 07 December 2007
Published: 29 August 2008
|
|
PACS: |
03.67.Mn
|
(Entanglement measures, witnesses, and other characterizations)
|
|
03.65.Ud
|
(Entanglement and quantum nonlocality)
|
|
42.50.Dv
|
(Quantum state engineering and measurements)
|
|
|
|
|
[1] Nielsen M A and Chuang I L 2000 Quantum Computationand Quantum Information (Cambridge: Cambridge University Press) p 57 [2] Bennett C H, Brassard G, Crepeau C, Jozsa R, Peres A andWootters W K 1993 Phys. Rev. Lett. 70 1895 [3] Buzek V, Vedral V, Plenio M B, Knight P L and Hillery M1997 Phys. Rev. A 55 3327 [4] Ding S C and Jin Z 2007 Chin. Sci. Bull. 522161 [5] Bennett C H, Bernstein H J, Popescu S and Schumacher B1996 Phys. Rev. A 53 2046 [6] Bennett C H, Brassard G, Popescu S, Schumacher B, SmolinJ A and Wootters W K 1996 Phys. Rev. Lett. 76 722 [7] Gu Y J, Gao P and Guo G C 2005 Chin. Phys. Lett. 22 1592 [8] Pan J W, Gasparoni S, Ursin R, Weihs G and Zeilinger A2003 Nature 423 417 [9] Yamamoto T, Koashi M, Ozdemir S K and Imoto N 2003 Nature 421 343 [10] Kwiat P G, Barraza-Lopez S, Stefanov A and Gisin N 2001 Nature 409 1014 [11] Zhao Z, Yang T, Chen Y A, Zhang A N and Pan J W 2003 %Phys. Rev. Lett. 90 207901 [12] Kim Y H, Kulik S P, Chekhova M V, Grice W P and Shih Y H2003 Phys. Rev. A 67 010301 [13] Zhao Z, Pan J W and Zhan M S 2001 Phys. Rev. A 64 014301 [14] Wang X B and Fan H 2003 Phys. Rev. A 68060302 [15] Durkin G A, Simon C and Bouwmeester D 2002 Phys.Rev. Lett. 88 187902 [16] Xiao L, Wang C, Zhang W, Huang Y D, Peng J D and Long G L2008 Phys. Rev. A 77 042315 [17] Sheng Y B, Deng F G and Zhou H Y 2008 Phys. Rev. A 77 062325 [18] Fiurasek J, Mista L, Jr and Filip R 2003 Phys. Rev.A 67 022304 [19] Menzies D and Korolkova N 2006 Phys. Rev. A 74 042315 [20] Bose S, Vedral V and Knight P L 1999 Phys. Rev. A 60 194 [21] Dunningham J A, Bose S, Henderson L, Vedral V and BurnettK 2002 Phys. Rev. A 65 064302 [22] Cao Z L, Zhang L H and Yang M 2003 Phys. Lett. A 308 349 [23] Cao Z L and Yang M 2003 J. Phys. B 36 4245 [24] Yang M, Zhao Y, Song W and Cao Z L 2005 Phys. Rev.A 71 044302 [25] Cao Z L, Zhang L H and Yang M 2006 Phys. Rev. A 73 014303 [26] Ogden C D, Paternostro M and Kim M S 2007 Phys.Rev. A 75 042325 [27] Brune M, Schmidt-Kaler F, Maali A, Dreyer J, Hagley E,Raimond J M and Haroche S 1996 Phys. Rev. Lett. 76 1800 [28] Nogues G, Rauschenbeutel A, Osnaghi S, Brune M, RaimondJ M and Haroche S 1999 Nature 400 239 [29] Zheng S B and Guo G C 2000 Phys. Rev. Lett. 85 2392 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|