Chin. Phys. Lett.  2008, Vol. 25 Issue (9): 3135-3137    DOI:
Original Articles |
Performance of Differential-Phase-Shift Keying Protocol Applying 1310nm Up-Conversion Single-Photon Detector
FENG Chen-Xu, JIAO Rong-Zhen, ZHANG Wen-Han
Laboratory for Quantum Information, Beijing University of Posts and Telecommunication, Beijing 100876
Cite this article:   
FENG Chen-Xu, JIAO Rong-Zhen, ZHANG Wen-Han 2008 Chin. Phys. Lett. 25 3135-3137
Download: PDF(188KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The performance of the differential-phase-shift keying (DPSK) protocol applying a 1310 nm up-conversion single-photon detector is analysed. The error rate and the communication rate as a function of distance for three quantum key distribution protocols, the Bennett--Brassard 1984, the Bennett--Brassard--Mermin 1992, and the DPSK, are presented. Then we compare the performance of these three protocols using the 1310nm up-conversion detector. We draw the conclusion that the DPSK protocol applying the detector has significant advantage over the other two protocols. Longer transmission distance and lower error rate can be achieved.
Keywords: 03.67.Dd      03.67.Hk     
Received: 03 January 2008      Published: 29 August 2008
PACS:  03.67.Dd (Quantum cryptography and communication security)  
  03.67.Hk (Quantum communication)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2008/V25/I9/03135
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
FENG Chen-Xu
JIAO Rong-Zhen
ZHANG Wen-Han
[1] Bennett C H and Brassard G 1984 Proceedings of theInternational Conference on Computers, Systems and SignalProcessing (Bangalore, India, December 1984) pp 175--179
[2] Bennett C H, Brassard G and Mermin N D 1992 Phys.Rev. Lett. 68 557
[3] Bennett C H 1992. Phys. Rev. Lett. 68 3121
[4] Wals E , Zeevi A and Yamamoto Y 2002 Phys. Rev. A 65 052310
[5] Inoue K , Waks E and Yamamoto Y 2002. Phys. Rev.Lett. 89 037902
[6] Inoue K, Waks E, and Yamamoto Y 2003 Phys. Rev. A 68 022317
[7] Santori C, Pelton M, Solomon G, Dale Y and Yamamoto Y 2001 Phys. Rev. Lett. 86 1502
[8] Diamanti E, Takesue H, Honjo T and Inoue K 2005. Phys. Rev. A 72 052311
Related articles from Frontiers Journals
[1] 天琦 窦,吉鹏 王,振华 李,文秀 屈,舜禹 杨,钟齐 孙,芬 周,雁鑫 韩,雨晴 黄,海强 马. A Fully Symmetrical Quantum Key Distribution System Capable of Preparing and Measuring Quantum States*

Supported by the Fundamental Research Funds for the Central Universities (Grant No. 2019XD-A02), and the State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications (Grant No. IPO2019ZT06).

[J]. Chin. Phys. Lett., 2020, 37(11): 3135-3137
[2] GUO Yu, LUO Xiao-Bing. Quantum Teleportation between Two Distant Bose–Einstein Condensates[J]. Chin. Phys. Lett., 2012, 29(6): 3135-3137
[3] Chang Ho Hong,Jin O Heo,Jong in Lim,Hyung jin Yang,**. A Quantum Network System of QSS-QDC Using χ-Type Entangled States[J]. Chin. Phys. Lett., 2012, 29(5): 3135-3137
[4] Piotr Zawadzki**. New View of Ping-Pong Protocol Security[J]. Chin. Phys. Lett., 2012, 29(1): 3135-3137
[5] WANG Chuan, **, HAO Liang, ZHAO Lian-Jie . Implementation of Quantum Private Queries Using Nuclear Magnetic Resonance[J]. Chin. Phys. Lett., 2011, 28(8): 3135-3137
[6] ZHANG Peng**, LI Chao, . Feasibility of Double-Click Attack on a Passive Detection Quantum Key Distribution System[J]. Chin. Phys. Lett., 2011, 28(7): 3135-3137
[7] YAN Hui, **, ZHU Shi-Liang, DU Sheng-Wang . Efficient Phase-Encoding Quantum Key Generation with Narrow-Band Single Photons[J]. Chin. Phys. Lett., 2011, 28(7): 3135-3137
[8] WANG Xiao-Bo, WANG Jing-Jing, HE Bo, XIAO Lian-Tuan**, JIA Suo-Tang . Photon Counting Optical Time Domain Reflectometry Applying a Single Photon Modulation Technique[J]. Chin. Phys. Lett., 2011, 28(7): 3135-3137
[9] WANG Mei-Yu, YAN Feng-Li** . Perfect Entanglement Teleportation via Two Parallel W State Channels[J]. Chin. Phys. Lett., 2011, 28(6): 3135-3137
[10] SHI Run-Hua, **, HUANG Liu-Sheng, YANG Wei, ZHONG Hong . A Novel Multiparty Quantum Secret Sharing Scheme of Secure Direct Communication Based on Bell States and Bell Measurements[J]. Chin. Phys. Lett., 2011, 28(5): 3135-3137
[11] SU Xiao-Qiang** . Entanglement Enhancement in an XY Spin Chain[J]. Chin. Phys. Lett., 2011, 28(5): 3135-3137
[12] LI Hong-Rong**, LI Fu-Li, ZHU Shi-Yao . Quantum Nonlocally Correlated Observables for Non-Gaussian States[J]. Chin. Phys. Lett., 2011, 28(5): 3135-3137
[13] HAN Jia-Jia, SUN Shi-Hai, LIANG Lin-Mei** . A Three-Node QKD Network Based on a Two-Way QKD System[J]. Chin. Phys. Lett., 2011, 28(4): 3135-3137
[14] WANG Tie-Jun, , LI Tao, DU Fang-Fang, DENG Fu-Guo** . High-Capacity Quantum Secure Direct Communication Based on Quantum Hyperdense Coding with Hyperentanglement[J]. Chin. Phys. Lett., 2011, 28(4): 3135-3137
[15] LIN Song, **, GAO Fei, LIU Xiao-Fen, . Quantum Secure Direct Communication with Five-Qubit Entangled State[J]. Chin. Phys. Lett., 2011, 28(3): 3135-3137
Viewed
Full text


Abstract