Original Articles |
|
|
|
|
External Electric Field Effect on Hydrogenic Donor Impurity in Zinc-Blende InGaN Quantum Dot |
JIANG Li-Ming1, WANG Hai-Long1, WU Hui-Ting1, GONG Qian2, FENG Song-Lin2 |
1College of Physics and Engineering, Qufu Normal University, Qufu 2731652Key Laboratory of Wireless Sensor Network and Communication, Shanghai Institute of Micro-system and Information Technology, Chinese Academy of Sciences, Shanghai 200050 |
|
Cite this article: |
JIANG Li-Ming, WANG Hai-Long, WU Hui-Ting et al 2008 Chin. Phys. Lett. 25 3017-3020 |
|
|
Abstract The binding energy of a hydrogenic donor impurity in zinc-blende (ZB) InGaN quantum dot (QD) is calculated in the framework of effective-mass envelope-function theory using the plane wave basis. It is shown that the donor binding energy is highly dependent on the impurity position, QD size and the external electric field. The symmetry of the electron probability distribution is broken and the maximum of the donor binding energy is shifted from the centre of QD in the presence of the external electric field. The degenerating energy levels for symmetrical positions with respect to the centre of QD are split. The splitting increases with the increase of QD height while the splitting increases up to a maximum value and then decreases with the increase of QD radius.
|
Keywords:
73.20.At
73.20.Dx
73.20.Hb
|
|
Received: 08 May 2008
Published: 25 July 2008
|
|
PACS: |
73.20.At
|
(Surface states, band structure, electron density of states)
|
|
73.20.Dx
|
|
|
73.20.Hb
|
(Impurity and defect levels; energy states of adsorbed species)
|
|
|
|
|
[1] Shi J J et al 2005 J. Appl. Phys. 97 083705 [2] Shi J J and Gan Z Z 2003 J. Appl. Phys. 94 407 [3] Williams D P, Andreev A D and Reilly E P O 2004 Superlattices Microstructures 36 791 [4] Chichibu SF et al 2003 J. Appl. Phys. 93 2051 [5] Husberg O et al 2001 Appl. Phys. Lett. 791243 [6] Husberg O et al 2002 Physica E 13 1090 [7] Lischka K 2001 J. Crystal Growth 231 415 [8] Barenco A et al 1995 Phys. Rev. Lett. 74 4083 [9] Movilla J L and Planelles J 2005 Phys. Rev. B 71 075319 [10] Lien N V et al 2001 J. Phys.: Condens. Matter 13 2563 [11] Yang C C et al 1998 Phys. Rev. B 58 1954 [12] Mendoza C I et al 2004 Phys. Status Solidi C 1 S74 [13] Mendoza C I et al 2005 Phys. Rev. B 71 075330 [14] Li S S and Xia J B 2007 Phys. Lett. A 366 120 [15]Charrour R et al 2000 J Phys.: Condens. Matter 12 4817 [16] Vartanian A L et al 2007 Phys. Lett. A 360649 [17] Li S S and Xia J B 2000 J. Appl. Phys. 887171 [18] Mendoza C I et al 2005 Phys. Rev. B 71075330 [19] Li S S and Xia J B 2007 J. Appl. Phys. 101093716 [20] Liu J J et al 2007 J. Appl. Phys. 101 073703 [21] Liu L Z and Liu J J 2007 J. Appl. Phys. 102033709 [22] Li S S and Xia J B 2006 J. Appl. Phys. 100083714 [23] Li S S and Xia J B 2006 Chin. Phys. Lett. 2371896 [24] Lemos V et al 2000 Phys. Rev. Lett. 84 3666 [25] Caetano E W S et al 2002 J. Crystal Growth 246 341 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|