Chin. Phys. Lett.  2008, Vol. 25 Issue (8): 2969-2972    DOI:
Original Articles |
Melting Behaviour of Mo by Shock Wave Experiment
ZHANG Xiu-Lu1,2, CAI Ling-Cang1, CHEN Jun1,3, XU Ji-An1, JING Fu-Qian 1,2
1Lab for Shock Wave and Detonation Physics Research, Institute of Fluid Physics, China Academy of Engineering Physics, PO Box 919-102, Mianyang 6219002Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 6100653Beijing Institute of Applied Physics and Computational Mathematics, Beijing 100088
Cite this article:   
ZHANG Xiu-Lu, CAI Ling-Cang, CHEN Jun et al  2008 Chin. Phys. Lett. 25 2969-2972
Download: PDF(175KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract In order to clarify the apparent discrepancy in determinations of melting temperature Tm of Mo between diamond-anvil cell (DAC) measurements from 0 to about 100GPa and shock wave (SW) measurement at only one pressure of about 390GPa by comparison with visual extrapolation, we perform SW experiments to replenish more Tm data on purpose to make this comparison more directly and rationally as well. The techniques adopted consist of Hügoniot sound velocity measurement for porous Mo and shock-induced release Tm measurements for both solid and porous Mo. Totally five SW Tm data, which extends the measured pressure range from previous about 390GPa down to about 136GPa that is close to the highest pressure (about 100GPa) attained by previous DAC experiments, are therefore obtained. These measured Tm data, other than the extrapolated as mentioned above, exhibit a manner of continuous variation with pressure and can be fitted well with Lindemann melting description. More significantly, the measured Tm data at lowest pressure are still much higher than that of the DACs and the overall trend of these Tm data is against to the two-segment melting curve model, with a sudden change in dTm/dP at about 210GPa, previously proposed by Errandonea [Physica B 357 (2005) 356]. Though the problem of large discrepancy in Tm data measured between DAC and SW has not been completely explained, our knowledge on this matter achieves indubitable progress since it is of value to programme the next clarification. Some suggestions for further clarifying the issue of large discrepancy between DAC and SW measurements are also proposed.
Keywords: 64.70.Dv      62.50.+p      62.65.+k     
Received: 15 April 2008      Published: 25 July 2008
PACS:  64.70.Dv  
  62.50.+p  
  62.65.+k (Acoustical properties of solids)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2008/V25/I8/02969
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHANG Xiu-Lu
CAI Ling-Cang
CHEN Jun
XU Ji-An
JING Fu-Qian
Related articles from Frontiers Journals
[1] DEBBOUB Salima**,BOUMAÏ, ZA Youcef,BOUDOUR Amar,TAHRAOUI Tarek. Attenuation of Rayleigh Surface Waves in a Porous Material[J]. Chin. Phys. Lett., 2012, 29(4): 2969-2972
[2] WANG Feng**, PENG Xiao-Shi, JIAO Chun-Ye, LIU Shen-Ye, JIANG Xiao-Hua, DING Yong-Kun . Shock-Timing Experiment Using a Two-Step Radiation Pulse with a Polystyrene Target[J]. Chin. Phys. Lett., 2011, 28(8): 2969-2972
[3] ZHANG Shi-Liang, ZHANG Xin-Yu, WANG Lin-Min, QI Li, ZHANG Su-Hong, ZHU Yan, LIU Ri-Ping** . Voronoi Structural Evolution of Bulk Silicon upon Melting[J]. Chin. Phys. Lett., 2011, 28(6): 2969-2972
[4] MA Xiao-Juan**, LIU Fu-Sheng, SUN Yan-Yun, ZHANG Ming-Jian, PENG Xiao-Juan, LI Yong-Hong . Effective Shear Viscosity of Iron under Shock-Loading Condition[J]. Chin. Phys. Lett., 2011, 28(4): 2969-2972
[5] SHI Li-Wei, **, DUAN Yi-Feng, YANG Xian-Qing, TANG Gang . Phonon and Elastic Instabilities in Zincblende TlN under Hydrostatic Pressure from First Principles Calculations[J]. Chin. Phys. Lett., 2011, 28(10): 2969-2972
[6] QI Mei-Lan, **, ZHONG Sheng, FAN Duan, LUO Chao, HE Hong-Liang . Microscopic Characteristics of Damage Evolution in Ultrapure Aluminum under Tensile Loading[J]. Chin. Phys. Lett., 2011, 28(1): 2969-2972
[7] SHI Li-Wei, DUAN Yi-Feng, YANG Xian-Qing, QIN Li-Xia. Structural, Electronic and Elastic Properties of Cubic Perovskites SrSnO3 and SrZrO3 under Hydrostatic Pressure Effect[J]. Chin. Phys. Lett., 2010, 27(9): 2969-2972
[8] SHI Li-Wei, DUAN Yi-Feng, QIN Li-Xia. Structural Stability and Elastic Properties of Wurtzite TlN under Hydrostatic Pressure[J]. Chin. Phys. Lett., 2010, 27(8): 2969-2972
[9] YOU Shu-Jie, CHEN Liang-Chen, JIN Chang-Qing. Hydrostaticity of Pressure Media in Diamond Anvil Cells[J]. Chin. Phys. Lett., 2009, 26(9): 2969-2972
[10] HOU Ri-Li, , PENG Jian-Xiang, JING Fu-Qian, ZHANG Jian-Hua, ZHOU Ping. Reshock Response of 2A12 Aluminum Alloy at High Pressures[J]. Chin. Phys. Lett., 2009, 26(9): 2969-2972
[11] SONG Hai-Feng, LIU Hai-Feng, ZHANG Guang-Cai, ZHAO Yan-Hong. Numerical Simulation of Wave Propagation and Phase Transition of Tin under Shock-Wave Loading[J]. Chin. Phys. Lett., 2009, 26(6): 2969-2972
[12] YU Yong, ZHAI Guang-Jie, JIN Chang-Qing. A Simple System to Measure Superconducting Transition Temperature at High Pressure[J]. Chin. Phys. Lett., 2009, 26(2): 2969-2972
[13] JIANG Heng, ZHANG Mi-Lin, WANG Yu-Ren, HU Yan-Ping, LAN Ding, WEIBing-Chen. A Wide Band Strong Acoustic Absorption in a Locally Network Anechoic Coating[J]. Chin. Phys. Lett., 2009, 26(10): 2969-2972
[14] WANG Hai-Yan, CHEN Yan, LIU Yu-Wen, LI Fei, LIU Jian-Hua, PENG Gui-Rong, WANG Wen-Kui. Pressure Effects on Solid State Phase Transformation of Aluminium Bronze in Cooling Process[J]. Chin. Phys. Lett., 2009, 26(10): 2969-2972
[15] QIAO Er-Wei, ZHENG Hai-Fei, XU Bei. Raman Scattering Spectroscopy of Phase Transition in n-Pentadecane under High Temperature and High Pressure[J]. Chin. Phys. Lett., 2009, 26(1): 2969-2972
Viewed
Full text


Abstract