Original Articles |
|
|
|
|
Comparison of Properties of the Simplest Neutron Stars in Three RMF Models |
WANG Guo-Hua1, FU Wei-Jie1 and LIU Yu-Xin1,2 |
1Department of Physics and the State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 1008712Center of Theoretical Nuclear Physics, National Laboratory of Heavy Ion Accelerator, Lanzhou 730000 |
|
Cite this article: |
WANG Guo-Hua, FU Wei-Jie and LIU Yu-Xin 2008 Chin. Phys. Lett. 25 2837-2840 |
|
|
Abstract We study some properties of the simplest neutron stars (NSs) in the Glendenning–Moszkowski (GM) model, the hybrid derivative coupling (HD) model and the Zimanyi–Moszkowski (ZM) model in the framework of relativistic mean field (RMF) theory with and without the interaction by exchanging the δ-meson. We show that the maximal mass of the NSs becomes smaller, but the redshift becomes larger from the GM model to the HD model, then to the ZM model. The interaction with the δ-meson exchange enlarges the maximal mass of neutron stars, increases the relative population of charged particles (proton, electron and muon) and descends the relative population of neutron.
|
Keywords:
26.60.-c
26.60.Kp
21.30.Fe
97.60.Jd
|
|
Received: 03 April 2008
Published: 25 July 2008
|
|
PACS: |
26.60.-c
|
(Nuclear matter aspects of neutron stars)
|
|
26.60.Kp
|
(Equations of state of neutron-star matter)
|
|
21.30.Fe
|
(Forces in hadronic systems and effective interactions)
|
|
97.60.Jd
|
(Neutron stars)
|
|
|
|
|
[1] Serot B D et al 1986 Advances in Nuclear Physics ed Negele J W and Vogt E (New York: Plenum Press) vol 16 p 1 [2] Reinhard P G 1989 Rep. Prog. Phys. 52 439 [3] Ring P 1996 Prog. Part. Nucl. Phys. 37 193 [4] Glendenning N K 2000 Compact Stars (Berlin: Springer) [5] Bender M et al 2003 Rev. Mod. Phys. 75 121 [6] Meng J et al 2006 Prog. Part. Nucl. Phys. 57 470 [7] Glendenning N K et al 1991 Phys. Rev. Lett. 67 2414 [8] Glendenning N K et al 1992 Phys. Rev. C 45 844 [9] Zimanyi J et al 1990 Phys. Rev. C 42 1416 [10] Glendenning N K 1982 Phys. Lett. B 114 392 Glendenning N K 1985 Astrophys. J. 293 470 Glendenning N K 1987 Z. Phys. A 327 295 Glendenning N K 1989Nucl. Phys. A 493 521 [11] Schaffner J and Mishustin I N 1996 Phys. Rev. C 53 1416 [12] Kubis S and Kutschera M 1997 Phys. Lett. B 399 191 [13] Hofmann F et al 2001 Phys. Rev. C 64 034314 [14] Liu B et al 2002 Phys. Rev. C 65 045201 [15] Greco V et al 2003 Phys. Rev. C 67 015203 [16] Menezes D P et al 2004 Phys. Rev. C 70 058801 [17] Gu J F et al 2005 Astrophys. J. 622 549 Gu J F et al 2006 Phys. Rev. C 73 055803 [18] Liu B et al 2005 Eur. Phys. J. A 25 293 [19] Schramm S 2003 Phys. Lett. B 560 164 [20] Sulaksono A et al 2005 Phys. Rev. C 72 065801 [21] Wei F X et al 2006 J. Phys. G 32 47 [22] Liu B et al 2007 Phys. Rev. C 75 048801 [23] Dhiman S K et al 2007 Phys. Rev. C 76 045801 [24] Wang G H et al 2007 Phys. Rev. C 76 065802 [25] Delfino A et al 1995 Phys. Rev. C 51 2188 Delfino A et al 1995 Phys. Lett. B 345 361 [26] Biró T S and Zimanyi J 1997 Phys. Lett. B 391 1 [27] Guo H, Liu Y X and Yang S 2001 Phys. Rev. C 63 044320 [28] Taurines A R et al 2001 Phys. Rev. C 63 065801 [29] Greco V et al 2003 Phys. Lett. B 562 215 [30] Gaitanos T et al 2004 Nucl. Phys. A 732 24 [31] Gaitanos T et al 2004 Phys. Lett. B 595 209 [32] Tolman R C 1939 Phys. Rev. 55 364 [33] Oppenheimer J R and Volkoff G M 1939 Phys. Rev. 55 374 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|