Chin. Phys. Lett.  2008, Vol. 25 Issue (8): 2803-2805    DOI:
Original Articles |
A New High Performance Realization of Hyperchaotic Modified Canonical Chua Circuit Using JFETs
Prem Bhushan Mital1, Umesh Kumar2, R.S. Prasad3
1IEC College of Engineering and Technology, GB Nagar, Pin-201 306, India2Indian Institute of Technology Delhi, Pin-110016, India3Inderprastha Eng. College, Sahibabad, Ghaziabad (UP), India
Cite this article:   
Prem Bhushan Mital, Umesh Kumar, R.S. Prasad 2008 Chin. Phys. Lett. 25 2803-2805
Download: PDF(103KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A new implementation of hyperchaotic modified canonical Chua circuit using junction field-effect transistors (JFETs) is proposed. The design is based on a source coupled JFET circuit to approximate a smooth cubic nonlinearity and a two-terminal negative resistance element containing a p-n-p silicon transistor and an n-channel JFET. The realization is supported by Orcad Pspice simulation and numerical MATLAB results. The hyperchaotic nature is confirmed by two positive Lyapunov exponents associated with the attractor which is a fractal with a Lyapunov dimension between 3 and 4.
Keywords: 05.45.-a     
Received: 10 February 2008      Published: 25 July 2008
PACS:  05.45.-a (Nonlinear dynamics and chaos)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2008/V25/I8/02803
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Prem Bhushan Mital
Umesh Kumar
R.S. Prasad
[1] Rossler O E 1979 Phys. Lett. 71 A 155
[2] Matsumoto T, Chua LO and Kobayashi K 1986 IEEETrans. Circuits and Systems II 33 1143
[3] Saito T 1991 IEEE Trans. Circuits and SystemsII 38 1517
[4] Tamasevicius A, Namajunas A and Cenys A 1996 ElectronLett. 32 957
[5] Tamasevicius A, Cenys A, Mukolaitis G, Namajunas A andLindberg E 1997 Electron Lett. 33 542
[6] Giannakopoulos K, Hadjidemetriou J and Deliyannis T 2001 Proceedings of the 14th Summer School on Non Linear Dynamics:Chaos and Complexity (Patras, Greece) p 163
[7] Lindberg E 2002 AIP Conf. Proc. 622 39
[8] Thamilmaran K, Lakshman M and Venkatesan A 2004 Int.J. Bif. Chaos 14 221
[9] Giannakopoulos K and Deliyannis T 2005 Int. J.Electron 92 143
[10] Eltawil A M and Elwakil A S 1999 Int. J. Electron.Commun. 53 158
[11] Zhong G Q 1994 IEEE Trans. Circuits and SystemsII 41 934
[12] Orcad Family release 9.2 2000 Cadence designsystems Inc.
[13] Siu S W K 1998 Lyapunov Exponents Toolbox
[14] Aguirregabiria J M 1998 Dynamic Solver version 1.10
[15] Wolf A, Swift J B, Swinney H L and John A W 1985 Physica D 16 285
[16] Parker T S and Chua L O 2000 Proc. IEEE 471243
[17] Frederickson P, Kaplan J L, Yorke E D and Yorke J A 1983 J. Diff. Eqns. 49 185
Related articles from Frontiers Journals
[1] K. Fakhar, A. H. Kara. The Reduction of Chazy Classes and Other Third-Order Differential Equations Related to Boundary Layer Flow Models[J]. Chin. Phys. Lett., 2012, 29(6): 2803-2805
[2] ZHAI Liang-Jun, ZHENG Yu-Jun, DING Shi-Liang. Chaotic Dynamics of Triatomic Normal Mode Molecules[J]. Chin. Phys. Lett., 2012, 29(6): 2803-2805
[3] NIU Yao-Bin, WANG Zhong-Wei, DONG Si-Wei. Modified Homotopy Perturbation Method for Certain Strongly Nonlinear Oscillators[J]. Chin. Phys. Lett., 2012, 29(6): 2803-2805
[4] LIU Yan, LIU Li-Guang, WANG Hang. Study on Congestion and Bursting in Small-World Networks with Time Delay from the Viewpoint of Nonlinear Dynamics[J]. Chin. Phys. Lett., 2012, 29(6): 2803-2805
[5] Paulo C. Rech. Dynamics in the Parameter Space of a Neuron Model[J]. Chin. Phys. Lett., 2012, 29(6): 2803-2805
[6] YAN Yan-Zong, WANG Cang-Long, SHAO Zhi-Gang, YANG Lei. Amplitude Oscillations of the Resonant Phenomena in a Frenkel–Kontorova Model with an Incommensurate Structure[J]. Chin. Phys. Lett., 2012, 29(6): 2803-2805
[7] LI Jian-Ping,YU Lian-Chun,YU Mei-Chen,CHEN Yong**. Zero-Lag Synchronization in Spatiotemporal Chaotic Systems with Long Range Delay Couplings[J]. Chin. Phys. Lett., 2012, 29(5): 2803-2805
[8] JIANG Jun**. An Effective Numerical Procedure to Determine Saddle-Type Unstable Invariant Limit Sets in Nonlinear Systems[J]. Chin. Phys. Lett., 2012, 29(5): 2803-2805
[9] FANG Ci-Jun,LIU Xian-Bin**. Theoretical Analysis on the Vibrational Resonance in Two Coupled Overdamped Anharmonic Oscillators[J]. Chin. Phys. Lett., 2012, 29(5): 2803-2805
[10] WEI Du-Qu, LUO Xiao-Shu, ZHANG Bo. Noise-Induced Voltage Collapse in Power Systems[J]. Chin. Phys. Lett., 2012, 29(3): 2803-2805
[11] SUN Mei, CHEN Ying, CAO Long, WANG Xiao-Fang. Adaptive Third-Order Leader-Following Consensus of Nonlinear Multi-agent Systems with Perturbations[J]. Chin. Phys. Lett., 2012, 29(2): 2803-2805
[12] REN Sheng, ZHANG Jia-Zhong, LI Kai-Lun. Mechanisms for Oscillations in Volume of Single Spherical Bubble Due to Sound Excitation in Water[J]. Chin. Phys. Lett., 2012, 29(2): 2803-2805
[13] WANG Sha, YU Yong-Guang. Generalized Projective Synchronization of Fractional Order Chaotic Systems with Different Dimensions[J]. Chin. Phys. Lett., 2012, 29(2): 2803-2805
[14] HUANG Jia-Min, TAO Wei-Ming**, XU Bo-Hou. Evaluation of an Asymmetric Bistable System for Signal Detection under Lévy Stable Noise[J]. Chin. Phys. Lett., 2012, 29(1): 2803-2805
[15] WANG Can-Jun** . Vibrational Resonance in an Overdamped System with a Sextic Double-Well Potential[J]. Chin. Phys. Lett., 2011, 28(9): 2803-2805
Viewed
Full text


Abstract