Chin. Phys. Lett.  2008, Vol. 25 Issue (8): 2754-2757    DOI:
Original Articles |
Exact Solutions of Klein--Gordon Equation with Scalar and Vector Rosen--Morse-Type Potentials
A. Soylu1, O. Bayrak2,3, I. Boztosun3
1Department of Physics, Nigde University, 51350, Nigde, Turkey2Department of Physics, Bozok University, 66200, Yozgat, Turkey3Department of Physics, Erciyes University, 38039, Kayseri, Turkey
Cite this article:   
A. Soylu, O. Bayrak, I. Boztosun 2008 Chin. Phys. Lett. 25 2754-2757
Download: PDF(98KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We obtain an exact analytical solution of the Klein--Gordon equation for the equal vector and scalar Rosen--Morse and Eckart potentials as well as the parity-time (PT) symmetric version of the these potentials by using the asymptotic iteration method. Although these PT symmetric potentials are non-Hermitian, the corresponding eigenvalues are real as a result of the PT symmetry.
Keywords: 03.65.Ge      34.20.Cf      34.20.Gj     
Received: 17 March 2008      Published: 25 July 2008
PACS:  03.65.Ge (Solutions of wave equations: bound states)  
  34.20.Cf (Interatomic potentials and forces)  
  34.20.Gj (Intermolecular and atom-molecule potentials and forces)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2008/V25/I8/02754
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
A. Soylu
O. Bayrak
I. Boztosun
Related articles from Frontiers Journals
[1] Ramesh Kumar, Fakir Chand. Energy Spectra of the Coulomb Perturbed Potential in N-Dimensional Hilbert Space[J]. Chin. Phys. Lett., 2012, 29(6): 2754-2757
[2] Akpan N. Ikot. Solutions to the Klein–Gordon Equation with Equal Scalar and Vector Modified Hylleraas Plus Exponential Rosen Morse Potentials[J]. Chin. Phys. Lett., 2012, 29(6): 2754-2757
[3] NIU Yao-Bin, WANG Zhong-Wei, DONG Si-Wei. Modified Homotopy Perturbation Method for Certain Strongly Nonlinear Oscillators[J]. Chin. Phys. Lett., 2012, 29(6): 2754-2757
[4] A. I. Arbab. Transport Properties of the Universal Quantum Equation[J]. Chin. Phys. Lett., 2012, 29(3): 2754-2757
[5] WANG Jun-Min. Periodic Wave Solutions to a (3+1)-Dimensional Soliton Equation[J]. Chin. Phys. Lett., 2012, 29(2): 2754-2757
[6] Hassanabadi Hassan, Yazarloo Bentol Hoda, LU Liang-Liang. Approximate Analytical Solutions to the Generalized Pöschl–Teller Potential in D Dimensions[J]. Chin. Phys. Lett., 2012, 29(2): 2754-2757
[7] CHEN Qing-Hu, **, LI Lei, LIU Tao, WANG Ke-Lin. The Spectrum in Qubit-Oscillator Systems in the Ultrastrong Coupling Regime[J]. Chin. Phys. Lett., 2012, 29(1): 2754-2757
[8] WANG Jun-Min**, YANG Xiao . Theta-function Solutions to the (2+1)-Dimensional Breaking Soliton Equation[J]. Chin. Phys. Lett., 2011, 28(9): 2754-2757
[9] SONG Hua-Jie, HUANG Feng-Lei** . Accurately Predicting the Density and Hydrostatic Compression of Hexahydro-1,3,5-Trinitro-1,3,5-Triazine from First Principles[J]. Chin. Phys. Lett., 2011, 28(9): 2754-2757
[10] M. R. Setare, *, D. Jahani, ** . Quantum Hall Effect and Different Zero-Energy Modes of Graphene[J]. Chin. Phys. Lett., 2011, 28(9): 2754-2757
[11] Jamieson M. J.**, Ouerdane H., . Parameters for Cold Collisions of Lithium and Caesium Atoms[J]. Chin. Phys. Lett., 2011, 28(6): 2754-2757
[12] ZHANG Min-Cang**, HUANG-FU Guo-Qing . Analytical Approximation to the -Wave Solutions of the Hulthén Potential in Tridiagonal Representation[J]. Chin. Phys. Lett., 2011, 28(5): 2754-2757
[13] HU Qiu-Bo, ZHANG Yong-Sheng, SUN Jin-Feng, YU Ke . Elastic Scattering between Ultracold 23Na and 85Rb Atoms in the Triplet State[J]. Chin. Phys. Lett., 2011, 28(4): 2754-2757
[14] O. Bayrak**, A. Soylu, I. Boztosun . Effect of the Velocity-Dependent Potentials on the Bound State Energy Eigenvalues[J]. Chin. Phys. Lett., 2011, 28(4): 2754-2757
[15] WANG Jun-Min . Traveling Wave Evolutions of a Cosh-Gaussian Laser Beam in Both Kerr and Cubic Quintic Nonlinear Media Based on Mathematica[J]. Chin. Phys. Lett., 2011, 28(3): 2754-2757
Viewed
Full text


Abstract