Chin. Phys. Lett.  2008, Vol. 25 Issue (8): 2735-2738    DOI:
Original Articles |
Interaction between Soliton and Periodic Wave
LI Yu-Qi
Center for Nonlinear Science, Ningbo University, Ningbo 315211
Cite this article:   
LI Yu-Qi 2008 Chin. Phys. Lett. 25 2735-2738
Download: PDF(940KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A truncation for the Laurent series in the Painlevé analysis of the KdV equation is restudied. When the truncation occurs the singular manifold satisfies two compatible fourth-order PDEs, which are homogeneous of degree 3. Both of the PDEs can be factored in the operator sense. The common factor is a third-order PDE, which is homogeneous of degree 2. The first few invariant manifolds of the third-order PDE are studied. We find that the invariant manifolds of the third-order PDE can be obtained by factoring the invariant manifolds of the KdV equation. A numerical solution of the third-order PDE is also presented. The solution reveals some interesting facts about the third-order PDE.
Keywords: 02.30.Ik     
Received: 19 May 2008      Published: 25 July 2008
PACS:  02.30.Ik (Integrable systems)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2008/V25/I8/02735
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LI Yu-Qi
[1] Dai H H, Fan E G and Geng X G arXiv:nlinSI/0602015
[2] Drazin P G and Johnson R S 1989 Solitons: anIntroduction (Cambridge: Cambridge University Press)
[3] Gardner C S, Greene J M, Kruskal M D and Miura R M 1967 Phys. Rev. Lett. 19 1095
[4] Korteweg D J and de Vries H 1895 Philos. Mag. 39 422
[5] Lou S Y, Hu H C and Tang X Y 2005 Phys. Rev. E 71 036604
[6] Lou S Y, Tong B, Hu H C and Tang X Y 2006 J. Phys.A: Math. Gen. 39 513
[7]Novikov S P 1974 Funktsional'nyi Analiz i EgoPrilozheniya vol 8(3) 54
[8] Russell J S 1844 Proc. 14th Meeting of the BritishAssociation for the Advancement of Science 311
[9] Weiss J, Tabor M and Carnevale G 1983 J. Math. Phys. 24 552
Related articles from Frontiers Journals
[1] E. M. E. Zayed, S. A. Hoda Ibrahim. Exact Solutions of Nonlinear Evolution Equations in Mathematical Physics Using the Modified Simple Equation Method[J]. Chin. Phys. Lett., 2012, 29(6): 2735-2738
[2] CAO Ce-Wen**,ZHANG Guang-Yao. Lax Pairs for Discrete Integrable Equations via Darboux Transformations[J]. Chin. Phys. Lett., 2012, 29(5): 2735-2738
[3] WANG Jun-Min. Periodic Wave Solutions to a (3+1)-Dimensional Soliton Equation[J]. Chin. Phys. Lett., 2012, 29(2): 2735-2738
[4] Hermann T. Tchokouansi, Victor K. Kuetche, Abbagari Souleymanou, Thomas B. Bouetou, Timoleon C. Kofane. Generating a New Higher-Dimensional Ultra-Short Pulse System: Lie-Algebra Valued Connection and Hidden Structural Symmetries[J]. Chin. Phys. Lett., 2012, 29(2): 2735-2738
[5] LIU Ping**, FU Pei-Kai. Note on the Lax Pair of a Coupled Hybrid System[J]. Chin. Phys. Lett., 2012, 29(1): 2735-2738
[6] LOU Yan, ZHU Jun-Yi** . Coupled Nonlinear Schrödinger Equations and the Miura Transformation[J]. Chin. Phys. Lett., 2011, 28(9): 2735-2738
[7] WANG Jun-Min**, YANG Xiao . Theta-function Solutions to the (2+1)-Dimensional Breaking Soliton Equation[J]. Chin. Phys. Lett., 2011, 28(9): 2735-2738
[8] CHEN Shou-Ting**, ZHU Xiao-Ming, LI Qi, CHEN Deng-Yuan . N-Soliton Solutions for the Four-Potential Isopectral Ablowitz–Ladik Equation[J]. Chin. Phys. Lett., 2011, 28(6): 2735-2738
[9] ZHAO Song-Lin**, ZHANG Da-Jun, CHEN Deng-Yuan . A Direct Linearization Method of the Non-Isospectral KdV Equation[J]. Chin. Phys. Lett., 2011, 28(6): 2735-2738
[10] ZHAO Hai-Qiong, ZHU Zuo-Nong**, ZHANG Jing-Li . Hamiltonian Structures and Integrability for a Discrete Coupled KdV-Type Equation Hierarchy[J]. Chin. Phys. Lett., 2011, 28(5): 2735-2738
[11] LI Ji-Na, ZHANG Shun-Li, ** . Approximate Symmetry Reduction for Initial-value Problems of the Extended KdV-Burgers Equations with Perturbation[J]. Chin. Phys. Lett., 2011, 28(3): 2735-2738
[12] WANG Jun-Min . Traveling Wave Evolutions of a Cosh-Gaussian Laser Beam in Both Kerr and Cubic Quintic Nonlinear Media Based on Mathematica[J]. Chin. Phys. Lett., 2011, 28(3): 2735-2738
[13] WU Hua, ZHANG Da-Jun** . Strong Symmetries of Non-Isospectral Ablowitz–Ladik Equations[J]. Chin. Phys. Lett., 2011, 28(2): 2735-2738
[14] Abbagari Souleymanou, **, Victor K. Kuetche, Thomas B. Bouetou, , Timoleon C. Kofane . Scattering Behavior of Waveguide Channels of a New Coupled Integrable Dispersionless System[J]. Chin. Phys. Lett., 2011, 28(12): 2735-2738
[15] YU Fa-Jun. Conservation Laws and Self-Consistent Sources for a Super-Classical-Boussinesq Hierarchy[J]. Chin. Phys. Lett., 2011, 28(12): 2735-2738
Viewed
Full text


Abstract