Chin. Phys. Lett.  2008, Vol. 25 Issue (6): 2121-2124    DOI:
Articles |
Onset of Unsteady Horizontal Convection in Rectangular Tank at Pr=1
SUN Liang1,2;MA Dong-Jun3;ZHANG Wei3;SUN De-Jun3
1School of Earth and Space Sciences, University of Science and Technology of China, Hefei 2300272LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 1000293Dept of Modern Mechanics, University of Science and Technology of China, Hefei 230027
Cite this article:   
SUN Liang, MA Dong-Jun, ZHANG Wei et al  2008 Chin. Phys. Lett. 25 2121-2124
Download: PDF(388KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The horizontal convection within a rectangular tank is numerically simulated. The flow is found to be unsteady at high Rayleigh numbers. There is a Hopf bifurcation of Ra from steady solutions to periodic solutions, and the critical
Rayleigh number Rac is obtained to be Rac=5.5377×108 for the middle plume forcing at Pr=1, which is much larger than the value previously obtained. In addition, the unstable perturbations are always generated from the central jet, which implies that the onset of instability is due to velocity shear (shear instability) other than thermally dynamics (thermal instability). Finally, Paparella and Young's first hypotheses [J. Fluid Mech. 466(2002)205] about the destabilization of the flow is numerically proven, i.e. the middle plume forcing can lead to a destabilization of the flow.
Keywords: 47.20.Bp      44.25.+f      92.10.Af     
Received: 24 February 2008      Published: 31 May 2008
PACS:  47.20.Bp (Buoyancy-driven instabilities (e.g., Rayleigh-Benard))  
  44.25.+f (Natural convection)  
  92.10.af (Thermohaline convection)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2008/V25/I6/02121
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
SUN Liang
MA Dong-Jun
ZHANG Wei
SUN De-Jun
[1] Paparella F and Young W R 2002 J. Fluid Mech. 466 205
[2] Mullarney J C, Griffiths R W and Hughes G O 2004 J. FluidMech. 516 181
[3] Wang W and Huang R X 2005 J. Fluid Mech. 540 49
[4] Hughes G O, Griffiths R W, Mullarney J C and Peterson W H 2007 J. Fluid Mech. 581 251
[5] Rossby H T 1965 Deep-Sea Research 12 9
[6] Rossby H T 1998 Tellus A 50242
[7] Siggers J H, Kerswell R R and Balmforth N J 2004 J. FluidMech. 517 55
[8] Sun L, Sun Y F, Sun D J and Yin X Y 2006 J. Hydrodyn. A 21 252 (in Chinese)
[9] Sun L, Sun Y F, Ma D J and Sun D J 2007 Acta Phys. Sin. 56 6503 (in Chinese)
[10] Quon C and Ghil M 1992 J. Fluid Mech. 245 449
[11] Arakawa A 1966 J. Comput. Phys. 1 119
[12] Orlandi P 2000 Fluid Flow Phenomena (Dordrecht: Kluwer)
Related articles from Frontiers Journals
[1] A. M. Salem. Temperature-Dependent Viscosity Effects on Non-Darcy Hydrodynamic Free Convection Heat Transfer from a Vertical Wedge in Porous Media[J]. Chin. Phys. Lett., 2010, 27(6): 2121-2124
[2] TAO Jian-Jun, TAN Wen-Chang. Relaxation Oscillation of Thermal Convection in Rotating Cylindrical Annulus[J]. Chin. Phys. Lett., 2010, 27(3): 2121-2124
[3] S. Mukhopadhyay . Effects of Slip on Unsteady Mixed Convective Flow and Heat Transfer Past a Stretching Surface[J]. Chin. Phys. Lett., 2010, 27(12): 2121-2124
[4] TAO Jian-Jun, YUAN Xiang-Jiang. Three-Dimensional Waves in Tilt Thermal Boundary Layers[J]. Chin. Phys. Lett., 2009, 26(2): 2121-2124
[5] LAI Hui-Lin, MA Chang-Feng,. An Implicit Scheme of Lattice Boltzmann Method for Sine-Gordon Equation[J]. Chin. Phys. Lett., 2008, 25(6): 2121-2124
[6] LI Lu-Jun, DUAN Li, HU Liang, KANG Qi. Experimental Investigation of Influence of Interfacial Tension on Convection of Two-Layer Immiscible Liquid[J]. Chin. Phys. Lett., 2008, 25(5): 2121-2124
[7] DUAN Li, KANG Qi, HU Wen-Rui. Experimental Study on Liquid Free Surface in Buoyant-Thermocapillary Convection[J]. Chin. Phys. Lett., 2008, 25(4): 2121-2124
[8] CHEN Xue-Hui, ZHENG Lian-Cun, ZHANG Xin-Xin. MHD Boundary Layer Flow of a Non-Newtonian Fluid on a Moving Surface with a Power-Law Velocity[J]. Chin. Phys. Lett., 2007, 24(7): 2121-2124
[9] MA Chang-Feng, , SHI Bao-Chang. Lattice Bhatnagar--Gross--Krook Simulations of Hydromagnetic Double-Diffusive Convection in a Rectangular Enclosure with Opposing Temperature and Concentration Gradients[J]. Chin. Phys. Lett., 2006, 23(7): 2121-2124
[10] MA Dong-Jun, SUN De-Jun, YIN Xie-Yuan. Axisymmetry Breaking to Travelling Waves in the Cylinder with Partially Heated Sidewall[J]. Chin. Phys. Lett., 2006, 23(6): 2121-2124
[11] ZHENG Lian-Cun, ZHANG Xin-Xin, HE Ji-Cheng. Transportation Characteristics for a Class of Generalized N-Diffusion Equation with Convection[J]. Chin. Phys. Lett., 2004, 21(6): 2121-2124
[12] LIU Qiu-Sheng, ZHOU Bing-Hong, NGUYEN THI Henri, HU Wen-Rui. Instability of Two-Layer Rayleigh-Bénard Convection with Interfacial Thermocapillary Effect[J]. Chin. Phys. Lett., 2004, 21(4): 2121-2124
[13] LIU Zhao-Hua, JIN Wei-Qing, PAN Zhi-Lei. Numerical Modeling of Velocity and Temperature Distribution of the Buoyancy Convection Effect in KNbO3 Melt[J]. Chin. Phys. Lett., 2002, 19(7): 2121-2124
[14] SHI Bao-Chang, GUO Zhao-Li, WANG Neng-Chao. Lattice Bhatnagar-Gross-Krook Simulations of Turbulent Natural Convection in a Cavity[J]. Chin. Phys. Lett., 2002, 19(4): 2121-2124
[15] GUO Wei-Bin, SHI Bao-Chang, WANG Neng-Chao, GUO Zhao-Li. Lattice Bhatnagar-Gross-Krook Simulation of Stratified Backward-Facing Step Flow[J]. Chin. Phys. Lett., 2002, 19(12): 2121-2124
Viewed
Full text


Abstract