Chin. Phys. Lett.  2008, Vol. 25 Issue (6): 2118-2120    DOI:
Articles |
An Implicit Scheme of Lattice Boltzmann Method for Sine-Gordon Equation
LAI Hui-Lin1;MA Chang-Feng 1,2
1College of Mathematics and Computer Science, Fujian Normal University, Fuzhou 3500072School of Mathematics and Computational Science, Guilin University of Electronic Technology, Guilin 441004
Cite this article:   
LAI Hui-Lin, MA Chang-Feng 2008 Chin. Phys. Lett. 25 2118-2120
Download: PDF(538KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We establish an implicit scheme of lattice Boltzmann method for simulating the sine-Gordon equation, which can be transformed into the explicit one, so the computation of the scheme is simple. Moreover, the parameter θ of the
implicit scheme is independent of the relaxation time, which makes the model more flexible. The numerical results show that this method is very effective.
Keywords: 47.11.+j      44.25.+f     
Received: 31 January 2008      Published: 31 May 2008
PACS:  47.11.+j  
  44.25.+f (Natural convection)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2008/V25/I6/02118
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LAI Hui-Lin
MA Chang-Feng
[1] Doolen G D 1991 Physica D 47 200
[2] Lebowitz S A and Qian Y H 1995 J. Stat. Phys. 68 536
[3] Benzi R, Succi S and Vergasola M 1992 Phys. Rep.222 145
[4] Chen S and Doolen G D 1998 Annu. Rev. Fluid Mech. 30 329
[5] Qian Y, D'Humieres D and Lallemand P 1992 Europhys.Lett. 17 479
[6] Guo Z L, Shi B C and Wang N C 2000 J. Comput. Phys. 165 288
[7] Ma C F 2005 Chin. Phys. Lett. 22 2313
[8] Ma C F and Shi B C 2006 Chin. Phys. Lett. 231842
[9] Ma C F and Shi B C 2005 Commun. Theor. Phys. 44 917
[10] Zhang L M 1999 J. University of Petroleum of China 23 100 (in Chinese)
[11] Wang Y S, Wang B and Ji Z Z 2004 Chin. J. Computat.Phys. 21 386 (in Chinese)
[12] Yan G W, Dong Y F, Hao Y and Wang W M 2004 J. Nonlinear Dynamics Sci. Technol. 11 32 (in Chinese)
[13] Wang R M, Wu L and Zhang J F 2006 J. Hydrodynamics 21 314 (in Chinese)
[14] Wang G C, Luo L P and Du R 2005 J. East ChinaJiaotong University 22 156 (in Chinese)
[15] Hu X L, GUO Z L and Zheng C G 2003 J. Hydrodynamics 18 127 (in Chinese)
[16] Brezis H 1983 Bull. Amer. Math. Soc. (N.S.) 8409
Related articles from Frontiers Journals
[1] SHI Lei**,XIONG Wei,GAO Shu-Sheng. The Effect of Gas Leaks on Underground Gas Storage Performance During Development and Operation[J]. Chin. Phys. Lett., 2012, 29(4): 2118-2120
[2] XU Wan-Hai**, DU Jie, YU Jian-Xing, LI Jing-Cheng . Wake Oscillator Model Proposed for the Stream-Wise Vortex-Induced Vibration of a Circular Cylinder in the Second Excitation Region[J]. Chin. Phys. Lett., 2011, 28(12): 2118-2120
[3] JI Yu-Pin, KANG Xiu-Ying, LIU Da-He. Simulation of Non-Newtonian Blood Flow by Lattice Boltzman Method[J]. Chin. Phys. Lett., 2010, 27(9): 2118-2120
[4] A. M. Salem. Temperature-Dependent Viscosity Effects on Non-Darcy Hydrodynamic Free Convection Heat Transfer from a Vertical Wedge in Porous Media[J]. Chin. Phys. Lett., 2010, 27(6): 2118-2120
[5] S. Mukhopadhyay . Effects of Slip on Unsteady Mixed Convective Flow and Heat Transfer Past a Stretching Surface[J]. Chin. Phys. Lett., 2010, 27(12): 2118-2120
[6] JI Yu-Pin, KANG Xiu-Ying, LIU Da-He. The Blood Flow at Arterial Bifurcations Simulated by the Lattice Boltzmann Method[J]. Chin. Phys. Lett., 2009, 26(7): 2118-2120
[7] DAI Zheng-De, XIAN Da-Quan, LI Dong-Long. Homoclinic Breather-Wave with Convective Effect for the (1+1)-Dimensional Boussinesq Equation[J]. Chin. Phys. Lett., 2009, 26(4): 2118-2120
[8] YI Hou-Hui, FAN Li-Juan, YANG Xiao-Feng, LI Hua-Bing. Lattice Boltzmann Simulations of Particle-Particle Interaction in Steady Poiseuille Flow[J]. Chin. Phys. Lett., 2009, 26(4): 2118-2120
[9] YI Hou-Hui, FAN Li-Juan, YANG Xiao-Feng, CHEN Yan-Yan. Effect of Rolling Massage on Particle Moving Behaviour in Blood Vessels[J]. Chin. Phys. Lett., 2008, 25(9): 2118-2120
[10] SUN Liang, MA Dong-Jun, ZHANG Wei, SUN De-Jun. Onset of Unsteady Horizontal Convection in Rectangular Tank at Pr=1[J]. Chin. Phys. Lett., 2008, 25(6): 2118-2120
[11] DAI Zheng-De, LIU Zhen-Jiang, LI Dong-Long. Exact Periodic Solitary-Wave Solution for KdV Equation[J]. Chin. Phys. Lett., 2008, 25(5): 2118-2120
[12] LI Dong-Long, DAI Zheng-De, GUO Yan-Feng. Periodic Homoclinic Wave of (1+1)-Dimensional Long--Short Wave Equation[J]. Chin. Phys. Lett., 2008, 25(12): 2118-2120
[13] QI Mei-Lan, HE Hong-Liang, YAN Shi-Lin. Effect of Temperature on the Void Growth in Pure Aluminium at High Strain-Rate Loading[J]. Chin. Phys. Lett., 2007, 24(8): 2118-2120
[14] CHEN Xue-Hui, ZHENG Lian-Cun, ZHANG Xin-Xin. MHD Boundary Layer Flow of a Non-Newtonian Fluid on a Moving Surface with a Power-Law Velocity[J]. Chin. Phys. Lett., 2007, 24(7): 2118-2120
[15] LI Hua-Bing, ZHANG Chao-Ying, LU Xiao-Yang, FANG Hai-Ping. An Effective Method on Two-Dimensional Lattice Boltzmann Simulations with Moving Boundaries[J]. Chin. Phys. Lett., 2007, 24(12): 2118-2120
Viewed
Full text


Abstract