Chin. Phys. Lett.  2008, Vol. 25 Issue (6): 2107-2110    DOI:
Articles |
Low-Temperature Thermal Conductance in Superlattice Nanowire with Structural Defect
WANG Xin-Jun1;LIU Jing-Feng2;LI Shui1
1Institute of Mathematics and Physics, Central South University of Forestry and Technology, Changsha 4100042College of Science, South China Agricultural University, Guangzhou 510642
Cite this article:   
WANG Xin-Jun, LIU Jing-Feng, LI Shui 2008 Chin. Phys. Lett. 25 2107-2110
Download: PDF(186KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Using the scattering-matrix cascading method, we investigate the effect of structural defect on the acoustic phonon transmission and thermal conductance in the superlattice nanowire at low temperatures. In the present system, the phonon transmissions exhibit quite complex oscillatory behaviour. It is found that a lateral defect in an otherwise periodic structure significantly decrease the thermal conductance and completely washes away the transmission quantization. However, the appreciable transmission quantization survives in the presence of a longitudinal defect whereas a good quantization plateau of thermal conductance emerges below the universal level in a wide temperature range with the lateral defect.

Keywords: 44.10.+i      63.22.+m      72.10.Fk     
Received: 05 April 2008      Published: 31 May 2008
PACS:  44.10.+i (Heat conduction)  
  63.22.+m  
  72.10.Fk (Scattering by point defects, dislocations, surfaces, and other imperfections (including Kondo effect))  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2008/V25/I6/02107
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
WANG Xin-Jun
LIU Jing-Feng
LI Shui
[1]Combescot M et al 1981 Solid State Commun. 39651
[2]Wang X H et al 1998 Phys. Rev. B 58 4629
[3]Chen K Q et al 2000 Phys. Rev. B 61 12075
[4]Pu N W and Bokor J 2003 Phys. Rev. Lett. 91076101
[5]Zucker J E et al 1984 Phys. Rev. Lett. 53 1280
[6]Huang K et al 1988 Phys. Rev. B 38 2183; 38 13377
[7]Chen K Q et al 2000 Phys. Rev. B 62 9919
[8]Wang X J et al 2005 Semicond. Sci. Technol. 201027
[9] Wang X J et al 2006 Semicond. Sci. Technol. 21751
[10]Sang H Y et al 2005 Phys. Lett. A 334 55
[11]Miller T and Chiang T C 1992 Phys. Rev. Lett. 68 3339
[12]Landauer R 1957 IBM J. Res. Dev. 1 223
[13]B\"{uttiker M 1986 Phys. Rev. Lett. 57 1761
[14]Rego L G C et al 1998 Phys. Rev. Lett. 81 232
[15]Schwab K et al 2000 Nature 404 974
[16]Tang L M et al 2006 Appl. Phys. Lett. 88163505
[17]Huang W Q et al 2005 Phys. Lett. A 336 245
[18]Huang W Q et al 2005 J. Appl. Phys. 98 093524
[19]Santamore D H et al 2001 Phys. Rev. Lett. 87115502
[20]Cross M C and Lifshitz R 2001 Phys. Rev. B 64085324
[21]Li W X et al 2006 Chin. Phys. Lett. 23 2522
[22]Lu J D et al 2007 Chin. Phys. Lett. 24 793
[23]Lu X, Chu J H and Shen W Z 2003 J. Appl. Phys. 93 1219
[24]Chen K Q et al 2005 Phys. Rev. B 72 045422
[25]Peng X F et al 2007 Appl. Phys. Lett. 90193502
Related articles from Frontiers Journals
[1] LIU Jing,FENG Shi-Wei**,ZHANG Guang-Chen,ZHU Hui,GUO Chun-Sheng,QIAO Yan-Bin,LI Jing-Wan. A Novel Method for Measuring the Temperature in the Active Region of Semiconductor Modules[J]. Chin. Phys. Lett., 2012, 29(4): 2107-2110
[2] T. Hayat, **, S. Hina, Awatif A. Hendi . Peristaltic Motion of Power-Law Fluid with Heat and Mass Transfer[J]. Chin. Phys. Lett., 2011, 28(8): 2107-2110
[3] CHEN Liang**, ZHANG Wan-Rong, XIE Hong-Yun, JIN Dong-Yue, DING Chun-Bao, FU Qiang, WANG Ren-Qing, XIAO Ying, ZHAO Xin . Restabilizing Mechanisms after the Onset of Thermal Instability in Bipolar Transistors[J]. Chin. Phys. Lett., 2011, 28(7): 2107-2110
[4] PAN Rui-Qin. Diameter and Temperature Dependence of Thermal Conductivity of Single-Walled Carbon Nanotubes[J]. Chin. Phys. Lett., 2011, 28(6): 2107-2110
[5] XU Wen, CHEN Wei-Zhong**, TAO Feng, . Thermal Rectification in Graded Nonlinear Transmission Lines[J]. Chin. Phys. Lett., 2011, 28(12): 2107-2110
[6] LIU Qing-Nian, MENG Song-He, JIANG Chi-Ping, SONG Fan. Critical Biot's number for Determination of the Sensitivity of Spherical Ceramics to Thermal Shock[J]. Chin. Phys. Lett., 2010, 27(8): 2107-2110
[7] GONG Yue-Feng, SONG Zhi-Tang, LING Yun, LIU Yan, LI Yi-Jin, FENG Song-Lin. Three-Dimensional Finite Element Simulations for the Thermal Characteristics of PCRAMs with Different Buffer Layer Materials[J]. Chin. Phys. Lett., 2010, 27(8): 2107-2110
[8] XIN Xiao-Feng, CHEN Cheng, WANG Bo-Fu, MA Dong-Jun, SUN De-Jun. Local Heating Effect of Flow Past a Circular Cylinder[J]. Chin. Phys. Lett., 2010, 27(4): 2107-2110
[9] CHEN Zhao-Jiang, ZHANG Shu-Yi. Thermal Depth Profiling Reconstruction by Multilayer Thermal Quadrupole Modeling and Particle Swarm Optimization[J]. Chin. Phys. Lett., 2010, 27(2): 2107-2110
[10] WANG Xin-Jun, LIU Jing-Feng, LUO Yong-Feng, LI Shui. The Influence of Cap and Defect Layer on Interface Optical-Phonon Modes in Finite Superlattices[J]. Chin. Phys. Lett., 2010, 27(1): 2107-2110
[11] LI Hai-Bin, NIE Qing-Miao, XIN Xiao-Tian. Asymmetric Heat Conduction in One-Dimensional Hard-Point Model with Mass Gradient[J]. Chin. Phys. Lett., 2009, 26(7): 2107-2110
[12] GONG Yue-Feng, SONG Zhi-Tang, LING Yun, LIU Yan, FENG Song-Lin. Simulation of SET Operation in Phase-Change Random Access Memories with Heater Addition and Ring-Type Contactor for Low-Power Consumption by Finite Element Modeling[J]. Chin. Phys. Lett., 2009, 26(11): 2107-2110
[13] LI Yu-Hua, QU Wei, FENG Jian-Chao. Temperature Dependence of Thermal Conductivity of Nanofluids[J]. Chin. Phys. Lett., 2008, 25(9): 2107-2110
[14] ZHANG Xing, TAKAHASHI Koji, FUJII Motoo. Charge and Heat Transport in Polycrystalline Metallic Nanostructures[J]. Chin. Phys. Lett., 2008, 25(9): 2107-2110
[15] GONG Yue-Feng, LING Yun, SONG Zhi-Tang, FENG Song-Lin. Simulation of Phase-Change Random Access Memory with Ring-Type Contactor for Low Reset Current by Finite Element Modelling[J]. Chin. Phys. Lett., 2008, 25(9): 2107-2110
Viewed
Full text


Abstract