Chin. Phys. Lett.  2008, Vol. 25 Issue (6): 2111-2114    DOI:
Articles |
Modelling of Phase Change Heat Transfer System for Micro-channel and Chaos Simulation
LUO Xiao-Ping1;CUI Z. F.2
1College of Mechanical and Automobile Engineering, South China University of Technology, Guangzhou 5106402Engineering Science Department, University of Oxford, Oxford, OX1 3PJ, UK
Cite this article:   
LUO Xiao-Ping, CUI Z. F. 2008 Chin. Phys. Lett. 25 2111-2114
Download: PDF(167KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The dynamic properties for the micro-channel phase change heat transfer system are studied by theoretical method combined with experiment. Liquid--vapour interface dynamic systems are obtained by introducing disjoining pressure produced by three phase molecular interactions and Lie algebra
analysis. Experiments for 0.6mm×2mm rectangular micro-channel are carried out to obtain the pressure time serials. Power spectrum density analysis for these serials shows that the system is in chaotic state if the frequency is above 7.39Hz. The result indicates that the high heat transfer performance of the micro channel phase change system may relate to the characteristics
of chaos. The chaos attractor is drawn by the simulation of the obtained differential dynamic system under the conditions of our experiment.
Keywords: 44.35.+c      44.05.+e      47.27.Ed      44.15.+a     
Received: 04 February 2008      Published: 31 May 2008
PACS:  44.35.+c (Heat flow in multiphase systems)  
  44.05.+e (Analytical and numerical techniques)  
  47.27.ed (Dynamical systems approaches)  
  44.15.+a (Channel and internal heat flow)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2008/V25/I6/02111
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LUO Xiao-Ping
CUI Z. F.
[1] Tran T N et al 1996 Int. J. Multiphase Flow 22485
[2] Tie C L and Chen G 1994 ASME J. Heat Transfer 116 799
[3] Zhang L et al 2005 Int. J. Heat Mass Transfer 48 1572
[4] Qu W et al 2003 Int. J. Heat Mass Transfer 462737
[5] Kenning D B R et al 2001 Chem. Eng. Res. Des. 79 425
[6] Tadrist T 2007 Int. J. Heat Fluid Flow 28 54
[7] Wayner, Jr. P C 1994 J. Heat Transfer 116938
[8] Schrage R W 1953 A Theoretical Study of InterphaseMass Transfer (New York: Columbia University Press)
[9] Wiggins S 1988 Global Bifurcations and Chaos,Analytical Methods (New York: Springer)
Related articles from Frontiers Journals
[1] YANG Zi-Xuan,CUI Gui-Xiang**,XU Chun-Xiao,ZHANG Zhao-Shun,SHAO Liang. Correlation between Temperature and Velocity Fluctuations in the Near-Wall Region of Rotating Turbulent Channel Flow[J]. Chin. Phys. Lett., 2012, 29(5): 2111-2114
[2] LI Zhi-Gang**, TANG Da-Wei, LI Tie, DU Jing-Long, . A Hemispherical-Involute Cavity Receiver for Stirling Engine Powered by a Xenon Arc Solar Simulator[J]. Chin. Phys. Lett., 2011, 28(5): 2111-2114
[3] BEZ�, R C�, CEK Nalan**, &Scedil, AH�, N &Scedil, ENCAN Arzu . Thermal Efficiency for Each Zone of a Solar Pond[J]. Chin. Phys. Lett., 2011, 28(10): 2111-2114
[4] WEI Jin-Jia**, XUE Yan-Fang, ZHAO Jian-Fu, LI Jing . Bubble Behavior and Heat Transfer of Nucleate Pool Boiling on Micro-Pin-Finned Surface in Microgravity[J]. Chin. Phys. Lett., 2011, 28(1): 2111-2114
[5] ZHAO Jian-Fu, LI Jing, YAN Na, WANG Shuang-Feng. Transition to Film Boiling in Microgravity: Influence of Subcooling[J]. Chin. Phys. Lett., 2010, 27(7): 2111-2114
[6] H. Saleh, I. Hashim. Flow Reversal of Fully-Developed Mixed MHD Convection in Vertical Channels[J]. Chin. Phys. Lett., 2010, 27(2): 2111-2114
[7] R. C. Aziz, I. Hashim** . Liquid Film on Unsteady Stretching Sheet with General Surface Temperature and Viscous Dissipation[J]. Chin. Phys. Lett., 2010, 27(11): 2111-2114
[8] TAO Yu-Jia, HUAI Xiu-Lan, LI Zhi-Gang. Numerical Simulation of Vapor Bubble Growth and Heat Transfer in a Thin Liquid Film[J]. Chin. Phys. Lett., 2009, 26(7): 2111-2114
[9] LIU Ya-Ming, LIU Zhao-Hui, HAN Hai-Feng, LI Jing, WANG Han-Feng, ZHENGChu-Guang. Scalar Statistics along Inertial Particle Trajectory in Isotropic Turbulence[J]. Chin. Phys. Lett., 2009, 26(6): 2111-2114
[10] CAI Jun, HUAI Xiu-Lan. A Lattice Boltzmann Model for Fluid-Solid Coupling Heat Transfer in Fractal Porous Media[J]. Chin. Phys. Lett., 2009, 26(6): 2111-2114
[11] M. CHANDRASEKAR, S. SURESH. Determination of Heat Transport Mechanism in Aqueous Nanofluids Using Regime Diagram[J]. Chin. Phys. Lett., 2009, 26(12): 2111-2114
[12] LI Yu-Hua, QU Wei, FENG Jian-Chao. Temperature Dependence of Thermal Conductivity of Nanofluids[J]. Chin. Phys. Lett., 2008, 25(9): 2111-2114
[13] YIN Tie-Nan, HUAI Xiu-Lan. Fourier and Wavelet Transform Analysis of Pressure Signals during Explosive Boiling[J]. Chin. Phys. Lett., 2008, 25(3): 2111-2114
[14] A. K. Alomari, M. S. M. Noorani, R. Nazar. Solutions of Heat-Like and Wave-Like Equations with Variable Coefficients by Means of the Homotopy Analysis Method[J]. Chin. Phys. Lett., 2008, 25(2): 2111-2114
[15] Arafa H. Aly. Peltier Coefficient and Photon-Assisted Tunnelling in Quantum Point Contact[J]. Chin. Phys. Lett., 2008, 25(12): 2111-2114
Viewed
Full text


Abstract