Chin. Phys. Lett.  2008, Vol. 25 Issue (6): 1950-1953    DOI:
Articles |
Quantum Homodyne Detection Based on Polarization Diversity Technique
LU Yuan;ZENG Gui-Hua;YI Zhi
State Key Laboratory of Advanced Optical Communication Systems and Networks, Department of Electronic Engineering, Shanghai Jiaotong University, Shanghai 200030
Cite this article:   
LU Yuan, ZENG Gui-Hua, YI Zhi 2008 Chin. Phys. Lett. 25 1950-1953
Download: PDF(102KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A polarization diversity receiver scheme is presented for improving efficiency of balance homodyne detection. The proposed scheme may mitigate polarization fluctuation between signal and local oscillator field. With simple linear optical component and electronic processing circuit, the noise caused by differential phase and polarization mode between signal and local oscillators may be significantly decreased. To track the polarization fluctuation, a novel algorithm based on polarization diversity receiver which can achieve better performance in terms of linear quantum optics principle is proposed.
Keywords: 03.67.Dd      03.65.Ud     
Received: 08 December 2007      Published: 31 May 2008
PACS:  03.67.Dd (Quantum cryptography and communication security)  
  03.65.Ud (Entanglement and quantum nonlocality)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2008/V25/I6/01950
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LU Yuan
ZENG Gui-Hua
YI Zhi
[1] Agrawal G P 2002 Fiber-Optic Communications Systems 3rd edn (New York: Wiley) chap 10 p 478
[2] Yang B J 1996 Fundaments of Quantum Optics (Beijing:BUPT Press) chap 5 p 186 (in Chinese)
[3] Gisin N et al 2002 Rev. Mod. Phys. 74 145C195
[4] Xu Q et al 5-9 March 2007 Proc. IEEE RIVF'07/5thInternational Conference on Research, Innovation \& Vision for theFuture in Viet Nam p 158
[5] Grosshans Fand et al 2002 Phys. Rev. Lett. 88057902
[6] Grosshans F et al 2003 Nature 421 238
[7] Namiki R and Hirano T 2003 Phys. Rev. A 67 022308
[8] Hirano T et al 2003 Phys. Rev. A 68 042331
[9] Hirano T et al 2006 Proc. SPIE 6244 62440
[10] He G Q and Zeng G H 2006 Chin. Phys. 15371
[11] Matthieu L et al 2005 arXiv:quant-ph/0511113
[12] Huang L L et al 2006 arXiv:quant-ph/0611120.
[13] Walls D F et al 1995 Quantum Optics (New York:Springer) p 42
[14] Angelis C D et al 1941 J. Lightwave Technol. 10 5
Related articles from Frontiers Journals
[1] 天琦 窦,吉鹏 王,振华 李,文秀 屈,舜禹 杨,钟齐 孙,芬 周,雁鑫 韩,雨晴 黄,海强 马. A Fully Symmetrical Quantum Key Distribution System Capable of Preparing and Measuring Quantum States*

Supported by the Fundamental Research Funds for the Central Universities (Grant No. 2019XD-A02), and the State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications (Grant No. IPO2019ZT06).

[J]. Chin. Phys. Lett., 2020, 37(11): 1950-1953
[2] REN Jie, WU Yin-Zhong, ZHU Shi-Qun. Quantum Discord and Entanglement in Heisenberg XXZ Spin Chain after Quenches[J]. Chin. Phys. Lett., 2012, 29(6): 1950-1953
[3] Chang Ho Hong,Jin O Heo,Jong in Lim,Hyung jin Yang,**. A Quantum Network System of QSS-QDC Using χ-Type Entangled States[J]. Chin. Phys. Lett., 2012, 29(5): 1950-1953
[4] SHAN Chuan-Jia,**,CAO Shuai,XUE Zheng-Yuan,ZHU Shi-Liang. Anomalous Temperature Effects of the Entanglement of Two Coupled Qubits in Independent Environments[J]. Chin. Phys. Lett., 2012, 29(4): 1950-1953
[5] LI Hong-Rong**,ZHANG Pei,GAO Hong,BI Wen-Ting,ALAMRI M. D.,LI Fu-Li. Non-Equilibrium Quantum Entanglement in Biological Systems[J]. Chin. Phys. Lett., 2012, 29(4): 1950-1953
[6] GE Rong-Chun, LI Chuan-Feng, GUO Guang-Can. Spin Dynamics in the XY Model[J]. Chin. Phys. Lett., 2012, 29(3): 1950-1953
[7] M. Ramzan. Decoherence and Multipartite Entanglement of Non-Inertial Observers[J]. Chin. Phys. Lett., 2012, 29(2): 1950-1953
[8] Piotr Zawadzki**. New View of Ping-Pong Protocol Security[J]. Chin. Phys. Lett., 2012, 29(1): 1950-1953
[9] LI Jun-Gang, **, ZOU Jian, **, XU Bao-Ming, SHAO Bin, . Quantum Correlation Generation in a Damped Cavity[J]. Chin. Phys. Lett., 2011, 28(9): 1950-1953
[10] ZHANG Ai-Ping**, QIANG Wen-Chao, LING Ya-Wen, XIN Hong, YANG Yong-Ming . Geometric Phase for a Qutrit-Qubit Mixed-Spin System[J]. Chin. Phys. Lett., 2011, 28(8): 1950-1953
[11] WANG Chuan, **, HAO Liang, ZHAO Lian-Jie . Implementation of Quantum Private Queries Using Nuclear Magnetic Resonance[J]. Chin. Phys. Lett., 2011, 28(8): 1950-1953
[12] ZHANG Peng**, LI Chao, . Feasibility of Double-Click Attack on a Passive Detection Quantum Key Distribution System[J]. Chin. Phys. Lett., 2011, 28(7): 1950-1953
[13] YAN Hui, **, ZHU Shi-Liang, DU Sheng-Wang . Efficient Phase-Encoding Quantum Key Generation with Narrow-Band Single Photons[J]. Chin. Phys. Lett., 2011, 28(7): 1950-1953
[14] WANG Xiao-Bo, WANG Jing-Jing, HE Bo, XIAO Lian-Tuan**, JIA Suo-Tang . Photon Counting Optical Time Domain Reflectometry Applying a Single Photon Modulation Technique[J]. Chin. Phys. Lett., 2011, 28(7): 1950-1953
[15] QIAN Yi, XU Jing-Bo** . Quantum Discord Dynamics of Two Atoms Interacting with Two Quantized Field Modes through a Raman Interaction with Phase Decoherence[J]. Chin. Phys. Lett., 2011, 28(7): 1950-1953
Viewed
Full text


Abstract