Chin. Phys. Lett.  2008, Vol. 25 Issue (6): 1947-1949    DOI:
Articles |
Scheme to Implement Scheme 1→M Economical Phase-Covariant Telecloning via Cavity QED
LIU Qi1;ZHANG Wen-Hai1,2;YE Liu
1School of Physics and Material Science, Anhui University, Hefei 2300392Department of Physics, Hefei Teacher College, Hefei 230061
Cite this article:   
LIU Qi, ZHANG Wen-Hai, YE Liu 2008 Chin. Phys. Lett. 25 1947-1949
Download: PDF(187KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We propose an experimentally feasible scheme to implement the economical 1→ M(M=2k+1) phase-covariant telecloning without ancilla based on cavity QED. The scheme requires cavity-assisted collision processes between atoms,
which cross through the off-resonant cavity field in the vacuum states. During the telecloning process, the cavity is only virtually excited and it thus greatly prolongs the efficient decoherent time. Therefore, our scheme may be realized in experiment in future.
Keywords: 03.67.-a      03.65.-w      42.50.-p     
Received: 26 November 2008      Published: 31 May 2008
PACS:  03.67.-a (Quantum information)  
  03.65.-w (Quantum mechanics)  
  42.50.-p (Quantum optics)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2008/V25/I6/01947
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LIU Qi
ZHANG Wen-Hai
YE Liu
[1] Wootters et al 1982 Nature (London) 299 802
[2] Dieks D 1982 Phys. Lett. A 92 271
[3] Gisin et al 2002 Mod. Phys. 74 145
[4] Buzek et al 1996 Phys. Rev. A 54 1844
[5] Scarani et al 2005 Rev. Mod. Phys. 77 1225
[6] Buzek et al 1998 Phys. Rev. Lett. 81 5003
[7] Cerf et al 2000 Phys. Rev. Lett. 84 4497
[8] Iblisdir et al 2005 Phys. Rev. A 72 042328
[9] Bruss et al 2000 Phys. Rev. A 62 12302
[10] Fan et al 2003 Phys. Rev. A 67 022317
[11] Durt et al 2005 Phys. Rev. A 72 052322
[12] Delgado et al 2007 Phys. Rev. Lett. 98 150502
[13] Zhang et al 2007 Phys. Rev. A 75 044303
[14] Zhang et al 2007 New J Phys 9 318
[15] Murao et al 1999 Phys. Rev. A 59 156
[16] Murao et al 2000 Phys. Rev. A 61 032311
[17] D\"ur W et al 2000 J. Mod. Opt. 47 247
[18] Ghiu et al 2003 Phys. Rev. A 67 012323
[19] Loock et al 2001 Phys. Rev. Lett. 87 247901
[20] Zhang et al 2006 Phys. Lett. A 353 130
[21] Zhang et al 2006 Phys Lett. A 354 344
[22] Yu et al 2007 Phys. Rev. A 76 034303
[23] Osnaghi et al 2001 Phys. Rev. Lett. 87 037902
[24]Zheng et al 2000 Phys. Rev. Lett. 85 2392
[25] Ye L 2005 Phys. Rev. A 71 034304
[25] Zou et al 2003 Phys. Rev. A 67 024304
Related articles from Frontiers Journals
[1] 天琦 窦,吉鹏 王,振华 李,文秀 屈,舜禹 杨,钟齐 孙,芬 周,雁鑫 韩,雨晴 黄,海强 马. A Fully Symmetrical Quantum Key Distribution System Capable of Preparing and Measuring Quantum States*

Supported by the Fundamental Research Funds for the Central Universities (Grant No. 2019XD-A02), and the State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications (Grant No. IPO2019ZT06).

[J]. Chin. Phys. Lett., 2020, 37(11): 1947-1949
[2] LIU Kui, CUI Shu-Zhen, YANG Rong-Guo, ZHANG Jun-Xiang, GAO Jiang-Rui. Experimental Generation of Multimode Squeezing in an Optical Parametric Amplifier[J]. Chin. Phys. Lett., 2012, 29(6): 1947-1949
[3] Akpan N. Ikot. Solutions to the Klein–Gordon Equation with Equal Scalar and Vector Modified Hylleraas Plus Exponential Rosen Morse Potentials[J]. Chin. Phys. Lett., 2012, 29(6): 1947-1949
[4] ZHOU Jun,SONG Jun,YUAN Hao,ZHANG Bo. The Statistical Properties of a New Type of Photon-Subtracted Squeezed Coherent State[J]. Chin. Phys. Lett., 2012, 29(5): 1947-1949
[5] XIANG Shao-Hua**,DENG Xiao-Peng,SONG Ke-Hui. Protection of Two-Qubit Entanglement by the Quantum Erasing Effect[J]. Chin. Phys. Lett., 2012, 29(5): 1947-1949
[6] QIAN Yi,XU Jing-Bo**. Enhancing Quantum Discord in Cavity QED by Applying Classical Driving Field[J]. Chin. Phys. Lett., 2012, 29(4): 1947-1949
[7] Arpita Maitra, Santanu Sarkar. On Universality of Quantum Fourier Transform[J]. Chin. Phys. Lett., 2012, 29(3): 1947-1949
[8] A. I. Arbab. Transport Properties of the Universal Quantum Equation[J]. Chin. Phys. Lett., 2012, 29(3): 1947-1949
[9] QIN Meng, ZHAI Xiao-Yue, CHEN Xuan, LI Yan-Biao, WANG Xiao, BAI Zhong. Effect of Spin-Orbit Interaction and Input State on Quantum Discord and Teleportation of Two-Qubit Heisenberg Systems[J]. Chin. Phys. Lett., 2012, 29(3): 1947-1949
[10] Ahmad Nawaz. Quantum State Tomography and Quantum Games[J]. Chin. Phys. Lett., 2012, 29(3): 1947-1949
[11] Hassanabadi Hassan, Yazarloo Bentol Hoda, LU Liang-Liang. Approximate Analytical Solutions to the Generalized Pöschl–Teller Potential in D Dimensions[J]. Chin. Phys. Lett., 2012, 29(2): 1947-1949
[12] LIU Yang, WU Jing-Hui, SHI Bao-Sen, GUO Guang-Can. Realization of a Two-Dimensional Magneto-optical Trap with a High Optical Depth[J]. Chin. Phys. Lett., 2012, 29(2): 1947-1949
[13] HU Xin, LIU Gang-Qin, XU Zhang-Cheng, PAN Xin-Yu. Influence of Microwave Detuning on Ramsey Fringes of a Single Nitrogen Vacancy Center Spin in Diamond[J]. Chin. Phys. Lett., 2012, 29(2): 1947-1949
[14] ZHAI Zhi-Yuan, YANG Tao, PAN Xiao-Yin**. Exact Propagator for the Anisotropic Two-Dimensional Charged Harmonic Oscillator in a Constant Magnetic Field and an Arbitrary Electric Field[J]. Chin. Phys. Lett., 2012, 29(1): 1947-1949
[15] Ciprian Dariescu, Marina-Aura Dariescu**. Chiral Fermion Conductivity in Graphene-Like Samples Subjected to Orthogonal Fields[J]. Chin. Phys. Lett., 2012, 29(1): 1947-1949
Viewed
Full text


Abstract