Chin. Phys. Lett.  2008, Vol. 25 Issue (5): 1888-1890    DOI:
Original Articles |
Eigenmode Splitting in all Hydrogenated Amorphous Silicon Nitride Coupled Microcavity
ZHANG Xian-Gao;CHEN Kun-Ji;QIAN Bo;CHEN San;DING Hong-Lin;LIU
Kui;WANG Xiang; XU Jun; LI Wei;HUANG Xin-Fan
National Laboratory of Solid State Microstructures, Department of Physics, Nanjing University, Nanjing 210093
Cite this article:   
ZHANG Xian-Gao, CHEN Kun-Ji, QIAN Bo et al  2008 Chin. Phys. Lett. 25 1888-1890
Download: PDF(1023KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Hydrogenated amorphous silicon nitride based coupled optical microcavity is investigated theoretically and experimentally. The theoretical calculation of the transmittance spectra of optical microcavity with one cavity and coupled
microcavity with two-cavity is performed. The optical eigenmode splitting for coupled microcavity is found due to the interaction between the neighbouring localized cavities. Experimentally, the coupled cavity samples are prepared by plasma enhanced chemical vapour deposition and characterized by photoluminescence measurements. It is found that the photoluminescence peak wavelength agrees well with the cavity mode in the calculated transmittance spectra. This eigenmode splitting is analogous to the electron state energy splitting in diatom molecules.
Keywords: 78.55.-m      42.70.Qs      42.55.Sa     
Received: 06 January 2008      Published: 29 April 2008
PACS:  78.55.-m (Photoluminescence, properties and materials)  
  42.70.Qs (Photonic bandgap materials)  
  42.55.Sa (Microcavity and microdisk lasers)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2008/V25/I5/01888
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHANG Xian-Gao
CHEN Kun-Ji
QIAN Bo
CHEN San
DING Hong-Lin
LIUKui
WANG Xiang
XU Jun
LI Wei
HUANG Xin-Fan
[1] Purcell EM 1946 Phys. Rev. 69 681
[2] Bj\"{ork G and Yamamoto Y 1995 Spontaneous Emissionand Laser Oscillation in Microcavities ed Yokoyama H and Ujihara K(London: CRC) p 189
[3] Stanley RP et al 1994 Appl. Phys. Lett. 652093
[4] Pavesi L et al 1998 Phys. Rev. B 58 15794
[5] Michler P et al 1997 Appl. Phys. Lett. 70 2073
[6] Pellandini P et al 1997 Appl. Phys. Lett. 71864
[7] Chen S et al 2007 Appl. Phys. Lett. 90 174101
[8] Giorgis F 2001 Appl. Phys. Lett. 77 522
[9] Chen S et al 2004 Proc. SPIE 5774 470
[10] Serpenguzel A et al 2001 Appl. Phys. Lett. 78 1388
[11] Ghatak A and Thyagarajan K 1989 Optical Electronics(New York: Cambridge University Press)
[12] Chen S et al 2005 Chin. Phys. Lett. 22 230
[13] Kittel C 1996 Introduction to Solid State Physics7th edn (New York: Wiley).
[14] Bayer M et al 1998 Phys. Rev. Lett. 81 2582
[15] Bayer M et al 1999 Phys. Rev. Lett. 83 5374
Related articles from Frontiers Journals
[1] ZHOU Hai-Chun, YANG Guang, WANG Kai, LONG Hua, LU Pei-Xiang. Coupled Optical Tamm States in a Planar Dielectric Mirror Structure Containing a Thin Metal Film[J]. Chin. Phys. Lett., 2012, 29(6): 1888-1890
[2] ZHOU Yan, YIN Li-Qun. Self-Detection of Leaking Pipes by One-Dimensional Photonic Crystals[J]. Chin. Phys. Lett., 2012, 29(6): 1888-1890
[3] ZHANG Li-Wei, ZHANG Ye-Wen, HE Li, WANG You-Zhen. Experimental Study of Tunneling modes in Photonic Crystal Heterostructure Consisting of Single-Negative Materials[J]. Chin. Phys. Lett., 2012, 29(6): 1888-1890
[4] HAN Ying,**,HOU Lan-Tian,ZHOU Gui-Yao,YUAN Jin-Hui,XIA Chang-Ming,WANG Wei,WANG Chao,HOU Zhi-Yun,. Flat Supercontinuum Generation within the Telecommunication Wave Bands in a Photonic Crystal Fiber with Central Holes[J]. Chin. Phys. Lett., 2012, 29(5): 1888-1890
[5] SUN Dun-Lu**,LUO Jian-Qiao,XIAO Jing-Zhong,ZHANG Qing-Li,CHEN Jia-Kang,LIU Wen-Peng,KANG Hong-Xiang,YIN Shao-Tang. Luminescence and Thermal Properties of Er:GSGG and Yb,Er:GSGG Laser Crystals[J]. Chin. Phys. Lett., 2012, 29(5): 1888-1890
[6] LI Heng,SHENG Chuan-Xiang**,CHEN Qian. Optical Bistability in Ag/Dielectric Multilayers[J]. Chin. Phys. Lett., 2012, 29(5): 1888-1890
[7] LI Cheng-Guo, GAO Yong-Hao, XU Xing-Sheng. Angular Tolerance Enhancement in Guided-Mode Resonance Filters with a Photonic Crystal Slab[J]. Chin. Phys. Lett., 2012, 29(3): 1888-1890
[8] WU Hong, JIANG Li-Yong, JIA Wei, LI Xiang-Yin. Polarization Beam Splitter Based on an Annular Photonic Crystal of Negative Refraction[J]. Chin. Phys. Lett., 2012, 29(3): 1888-1890
[9] XU Xiao-Yan, MA Xiang-Yang, JIN Lu, YANG De-Ren. Effect of Rapid Thermal Annealing Ambient on Photoluminescence of ZnO Films[J]. Chin. Phys. Lett., 2012, 29(3): 1888-1890
[10] HAN Ying, **, HOU Lan-Tian, YUAN Jin-Hui, XIA Chang-Ming, ZHOU Gui-Yao,. Ultraviolet Continuum Generation in the Fundamental Mode of Photonic Crystal Fibers[J]. Chin. Phys. Lett., 2012, 29(1): 1888-1890
[11] CHEN Xi-Yao**, LIN Gui-Min, LI Jun-Jun, XU Xiao-Fu, JIANG Jun-Zhen, QIANG Ze-Xuan, QIU Yi-Shen, LI Hui. Polarization Beam Splitter Based on a Self-Collimation Michelson Interferometer in a Silicon Photonic Crystal[J]. Chin. Phys. Lett., 2012, 29(1): 1888-1890
[12] WU Li-Ang, FU Heng-Yi, QIAN Jiang-Yun, ZHAO Da-Liang, LUO Qun, QIAO Xu-Sheng**, FAN Xian-Ping, ZHANG Xiang-Hua. The Preparation and Photoluminescence Properties of Fluorosilicate Glass Ceramics Containing CeF3:Dy3+ Nanocrystals[J]. Chin. Phys. Lett., 2012, 29(1): 1888-1890
[13] ZHANG Xuan, CHEN Shu-Wen, LIAO Qing-Hua**, YU Tian-Bao, LIU Nian-Hua, HUANG Yong-Zhen . Design of a Novel Polarized Beam Splitter Based on a Two-Dimensional Photonic Crystal Resonator Cavity[J]. Chin. Phys. Lett., 2011, 28(8): 1888-1890
[14] YANG Lin-Hong, DONG Hong-Xing, SUN Zheng, SUN Liao-Xin, SHEN Xue-Chu, CHEN Zhang-Hai** . Temperature-Induced Phase Transition of In2O3 from a Rhombohedral Structure to a Body-Centered Cubic Structure[J]. Chin. Phys. Lett., 2011, 28(8): 1888-1890
[15] YIN Yang, RAN Guang-Zhao**, ZHANG Bin, QIN Guo-Gang** . Photo- and Electro-Luminescence at 1.54µm from Er3+ in SiC:Er2O3 Films and Structures[J]. Chin. Phys. Lett., 2011, 28(7): 1888-1890
Viewed
Full text


Abstract