Chin. Phys. Lett.  2008, Vol. 25 Issue (5): 1776-1779    DOI:
Original Articles |
Surface Plasmon Resonance and Field Enhancement of Au/Ag Alloyed Hollow Nanoshells
ZHOU Li;YU Xue-Feng;FU Xiao-Feng;HAO Zhong-Hua;LI Kai-Yang
Key Laboratory of Acoustic and Photonic Materials and Devices of Ministry of Education, Department of Physics, Wuhan University, Wuhan 430072
Cite this article:   
ZHOU Li, YU Xue-Feng, FU Xiao-Feng et al  2008 Chin. Phys. Lett. 25 1776-1779
Download: PDF(1597KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We investigate the nanostructure, surface plasmon resonance (SPR) absorption and nonlinear enhancement of Au/Ag alloyed hollow nanoshells prepared by the replacement reaction of Ag nanoparticles in a HAuCl4 aqueous solution. As the volume of HAuCl4 increases from 0mL to 0.5mL, the SPR band of the Au/Ag alloyed nanoshells is tuned from 430nm to 780nm, and
the third-order nonlinear optical susceptibility is enhanced nearly by an order of magnitude, which indicates a large enhancement of local field in the Au/Ag alloyed hollow nanoshells with hole defects.
Keywords: 61.46.Df      73.20.Mf      78.67.Bf     
Received: 13 October 2007      Published: 29 April 2008
PACS:  61.46.Df (Structure of nanocrystals and nanoparticles ("colloidal" quantum dots but not gate-isolated embedded quantum dots))  
  73.20.Mf (Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))  
  78.67.Bf (Nanocrystals, nanoparticles, and nanoclusters)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2008/V25/I5/01776
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHOU Li
YU Xue-Feng
FU Xiao-Feng
HAO Zhong-Hua
LI Kai-Yang
[1] Brongersma M L 2003 Nat. Mater. 2 296
[2] Hirsch L R, Gobin A M, Lowery A R, Tam F, Drezek R A,Halas N J and West J L 2006 Ann. Biomed. Eng. 34 15
[3] Sun Y G, Mayers B and Xia Y N 2003 Adv. Mater. 15 641
[4] Oldenburg S J, Averitt R D, Westcott S L and Halas N J1998 Chem. Phys. Lett. 288 243
[5] Sun Y G and Xia Y N 2002 Anal. Chem. 74 5297
[6] Sun Y G and Xia Y N 2003 Nano Lett. 3 1569
[7] Sun Y G and Xia Y N 2004 J. Am. Chem. Soc. 126 3892
[8] Lu X M, Tuan H Y, Chen J Y, Li Z Y, Korgel B A and Xia Y N2007 J. Am. Chem. Soc. 129 1733
[9] Averitt R D, Westcott S L and Halas N J 1999 J. Opt.Soc. Am. B 16 1824
[10] Shi W, Sahoo Y, Swihart M T and Prasad P N 2005 Langmuir 21 1610
[11] Weissleder R 2001 Nat. Biotechnol. 19 316
[12] Hirsch L R, Jackson J B, Lee A, Halas N J and West J 2003 Anal. Chem. 75 2377
[13] Loo C, Hirsch L, Lee M H, Chang E, West J, Halas N andDrezek R 2005 Opt. Lett. 30 1012
[14] Cang H, Sun T, Li Z Y, Chen J Y, Wiley B J, Xia Y N andLi X D 2005 Opt. Lett. 30 3048
[15] Loo C, Lowery A, Halas N, West J and Drezek R 2005 Nano Lett. 5 709
[16] Chen J Y, Wang D L, Xi J F, Au L, Siekkinen A, Warsen A,Li Z Y, Zhang H, Xia Y N and Li X D 2007 Nano Lett. 71318
[17] Talley C E, Jackson J B, Oubre C, Grady N K, Hollars C W,Lane S M, Huser T R, Nordlander P and Halas N J 2005 NanoLett. 5 1569
[18] Jackson J B, Westcott S L, Hirsch L R, West J L and HalasN J 2003 Appl. Phys. Lett. 82 257
[19] Oldenburg S J, Westcott S L, Averitt R D and Halas N J1999 J. Chem. Phys. 111 4729
[20] Tam F, Goodrich G P, Johnson B R and Halas N J 2007 Nano Lett. 7 496
[21] Wang Q Q, Han J B, Guo D L, Xiao S, Han Y B, Gong H M andZou X W 2007 Nano Lett. 7 723
[22] Hao E, Li S Y, Bailey R C, Zou S L, Schatz G C and Hupp JT 2004 J. Phys. Chem. B 108 1224
[23] Neeves A E and Birnboim M H 1989 J. Opt. Soc. Am. B 6 787
[24] Boyd R W and Sipe J E 1994 J. Opt. Soc. Am. B 11 297
[25] Wang Q Q, Han J B, Gong H M, Chen D J, Zhao X J, Feng J Yand Ren J J 2006 Adv. Funct. Mater. 16 2405
[26] Gong H M, Wang X H, Du Y M and Wang Q Q 2006 J.Chem. Phys. 125 024707
[27] Cortie M and Ford M 2007 Nanotechnology 18235704
[28] Zhu J 2005 Physica E 27 296
[29] Mallin M P and Murphy C J 2002 Nano Lett. 21235
[30] Yang J, Lee J Y and Too H P 2005 J. Phys. Chem. B 109 19208
[31] Sheik-Bahae M, Said A A, Wei T, Hagan D J and VanStryland E W 1990 IEEE J. Quantum Electron. 26 760
[32] Hutchings D C, Sheik-Bahae M, Hagan D J and Van StrylandE W 1992 Opt. Quant. Electron. 24 1
[33] Han J B, Chen D J, Ding S, Zhou H J, Han Y B, Xiong G Gand Wang Q Q 2006 J. Appl. Phys. 99 023526
[34] Chen D J, Ding S, Han J B, Zhou H J, Xiao S, Xiong G Gand Wang Q Q 2005 Chin. Phys. Lett. 22 2286
Related articles from Frontiers Journals
[1] KIM Un-Chol, JIANG Xiao-Qing. Numerical Analysis of Efficiency Enhancement in Plasmonic Thin-Film Solar Cells by Using the SILVACO TCAD Simulator[J]. Chin. Phys. Lett., 2012, 29(6): 1776-1779
[2] ZHAI Zhi-Yuan, YANG Tao, PAN Xiao-Yin**. Exact Propagator for the Anisotropic Two-Dimensional Charged Harmonic Oscillator in a Constant Magnetic Field and an Arbitrary Electric Field[J]. Chin. Phys. Lett., 2012, 29(1): 1776-1779
[3] WANG Peng, WANG Rong-Yao**, JIN Jing-Yang, XU Le, SHI Qing-Fan**. The Morphological Change of Silver Nanoparticles in Water[J]. Chin. Phys. Lett., 2012, 29(1): 1776-1779
[4] BAI Yi-Ming**, WANG Jun, CHEN Nuo-Fu, YAO Jian-Xi, ZHANG Xing-Wang, YIN Zhi-Gang, ZHANG Han, HUANG Tian-Mao . Dipolar and Quadrupolar Modes of SiO2/Au Nanoshell Enhanced Light Trapping in Thin Film Solar Cells[J]. Chin. Phys. Lett., 2011, 28(8): 1776-1779
[5] LI Ming-Zhu, AN Zheng-Hua**, ZHOU Lei, MAO Fei-Long, WANG Heng-Liang . Strong Coupling between Propagating and Localized Surface Plasmons in Plasmonic Cavities[J]. Chin. Phys. Lett., 2011, 28(7): 1776-1779
[6] CAO Zhi-Shen, PAN Jian, CHEN Zhuo, ZHAN Peng, MIN Nai-Ben, WANG Zhen-Lin** . Pure Electric and Pure Magnetic Resonances in Near-Infrared Metal Double-Triangle Metamaterial Arrays[J]. Chin. Phys. Lett., 2011, 28(5): 1776-1779
[7] SUN Bao-Qing, GU Ying**, HU Xiao-Yong, GONG Qi-Huang** . A Trade-off between Propagation Length and Light Confinement in Cylindrical Metal-Dielectric Waveguides[J]. Chin. Phys. Lett., 2011, 28(5): 1776-1779
[8] LIU Xiao-Lan, PENG Xiao-Niu, YANG Zhong-Jian, LI Min, ZHOU Li** . Linear and Nonlinear Optical Properties of Micrometer-Scale Gold Nanoplates[J]. Chin. Phys. Lett., 2011, 28(5): 1776-1779
[9] CHENG Zhi-Da, ZHU Jing, **, TANG Zheng . Noncollinear Magnetism Calculation of Iron Clusters with Spin-Orbit Coupling[J]. Chin. Phys. Lett., 2011, 28(3): 1776-1779
[10] LUO Shi-Qiang, ZHAO Li-Juan**, HU Nan, ZHANG Ming, ZHANG Pan, WANG Ya-Zhou, YU Hua** . Cooperative Quantum Cutting in Er3+/Yb3+ Codoped Oxyfluoride Glass Ceramics[J]. Chin. Phys. Lett., 2011, 28(3): 1776-1779
[11] WANG Yue, WU Da-Jian, YANG Yue-Tao, LIU Xiao-Jun** . Nd-Doping Induced Lattice Distortion in TiO2 Nanoparticles[J]. Chin. Phys. Lett., 2011, 28(2): 1776-1779
[12] ZHENG Jing-Gao, SUN Jia-Lin**, XUE Ping** . Negative Photoconductivity Induced by Surface Plasmon Polaritons in the Kretschmann Configuration[J]. Chin. Phys. Lett., 2011, 28(12): 1776-1779
[13] WANG Xiao, JIANG Zui-Min, XU Fei, **, MA Zhong-Quan, XU Run, YU Bin, LI Ming-Zhu, ZHENG Ling-Ling, FAN Yong-Liang, HUANG Jian, LU Fang . Enhancement of Er3+ Emission from an Er−Si Codoped Al2O3 Film by Stacking Si−Doped Al2O3 Sublayers[J]. Chin. Phys. Lett., 2011, 28(12): 1776-1779
[14] DING Bin-Feng**, LI Yong-Ping, WANG Li-Ming . Structural and Magnetic Properties of Ni-Implanted Rutile Single Crystals[J]. Chin. Phys. Lett., 2011, 28(10): 1776-1779
[15] LIU Tao**, HUANG Zheng . High-Efficiency Graphene Photo Sensor Using a Transparent Electrode[J]. Chin. Phys. Lett., 2011, 28(10): 1776-1779
Viewed
Full text


Abstract