Chin. Phys. Lett.  2008, Vol. 25 Issue (5): 1780-1783    DOI:
Original Articles |
Synthesis of [100] Wurtzite InN Nanowires and [011] Zinc-Blende InN Nanorods
NIE Chao;ZHANG Rong;XIE Zi-Li;XIU Xiang-Qiang;LIU Bin;FU De-Yi;LIU Qi-Jia;HAN Ping;GU Shu-Lin;SHI Yi;ZHENG You-Dou
Jiangsu Provincial Key Laboratory of Advanced Photonic and Electronic Materials and Department of Physics, Nanjing University, Nanjing 210093
Cite this article:   
NIE Chao, ZHANG Rong, XIE Zi-Li et al  2008 Chin. Phys. Lett. 25 1780-1783
Download: PDF(7607KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract One-dimensional wurtzite InN nanowires and zincblende InN nanorods are prepared by chemical vapour deposition (CVD) method on natural cleavage plane (110) of GaAs. The growth direction of InN nanowires is [100], with wurtzite structure. The stable crystal structure of InN is wurtzite (w-InN), zincblende structure (z-InN) is only reported for 2D InN crystals before.
However, in this work, the zincblende InN nanorods [011] are synthesized and characterized. The SEM and TEM images show that every nanorod shapes a conical tip, which can be explained by the anisotropy of growth process and the theory of Ehrlich--Schwoebel barrier.
Keywords: 61.46.Km      62.23.Hj      81.07.Vb     
Received: 17 January 2008      Published: 29 April 2008
PACS:  61.46.Km (Structure of nanowires and nanorods (long, free or loosely attached, quantum wires and quantum rods, but not gate-isolated embedded quantum wires))  
  62.23.Hj (Nanowires)  
  81.07.Vb (Quantum wires)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2008/V25/I5/01780
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
NIE Chao
ZHANG Rong
XIE Zi-Li
XIU Xiang-Qiang
LIU Bin
FU De-Yi
LIU Qi-Jia
HAN Ping
GU Shu-Lin
SHI Yi
ZHENG You-Dou
[1] Neumayer D A and Ekerdt J G 1996 Chem. Mater. 8 9
[2] Davydov V Yu, Klochikhin A A and Seisyan R P 2002 Phys. StatusSolidi B 229 R1
[3] Wu J, Walukiewicz W, Yu K M, Ager J W, Haller E E, Lu H, Schaff WJ, Saito Y and Nanishi Y 2002 Appl. Phys. Lett. 80 3967
[4] Monemar B, Paskov P P, and Kasic A 2005 SuperlatticesMicrostruct. 38 38
[5] Bhuiyan A G, Hashimoto A and Yamamoto A J 2003 J. Appl.Phys. 94 2779
[6] Yang Pei-dong, Wu Yi-ying and Fan Rong 2002 Int. J. Nanosci. 1 1
[7] Jones R D and Rose K 1987 J. Phys. Chem. Solids 48 587
[8] Cheng G S, Eric S, Turner-Evans D and Reed M A 2005 Appl. Phys.Lett. 87 253103
[9] Cai X M, Cheng K Y, Djurisic A B and Xie M H 2007 Mater. Lett. 61 1563
[10] Kurimoto E, Hangyo M, Harima H, Yoshimoto M, Yamaguchi T, Araki T,Nanishi Y and Kisoda K 2004 Appl. Phys. Lett. 84 212
[11] Liang C, Chen L, Wang J H, Chen K, Hung Y and Chen Y 2002 Appl. Phys. Lett. 81 22
[12] Tang T, Han S, Jin W, Liu X, Li C, Zhang D, Zhou C, Chen B, Han Jand Meyyapan M 2004 J. Mater. Res. 19 423
[13] Schofield P S, Zhou W, Wood P, Samuel I D W and Cole-Hamilton D J2004 J. Mater. Chem. 14 3124
[14] Messmer C and Bilello J C 1981 J. Appl. Phys. 52 7
[15] Ehrlich G and Hudda H 1966 J. Chem. Phys. 44 1039
[16] Schwoebel R L 1969 J. Appl. Phys. 40 614
[17] Cozzoli P D, Curri L and Agostiano A 2003 J. Phys. 10 4756
[18] Siegert M and Plischke M 1996 Phys. Rev. E 53 307
Related articles from Frontiers Journals
[1] YANG Gong-Xian, GONG Xiu-Fang. Laser-Induced Distortions and Disturbance Propagation of Delocalized Electronic States in Monatomic Carbon Chains[J]. Chin. Phys. Lett., 2012, 29(6): 1780-1783
[2] CHEN Ke, HE Jian-Jun, LI Ming-Yu, LaPierre R. Fabrication of GaAs Nanowires by Colloidal Lithography and Dry Etching[J]. Chin. Phys. Lett., 2012, 29(3): 1780-1783
[3] XIE Shi-Feng, CHEN Shang-Da**, SOH Ai-Kah . The Effect of Atomic Vacancies and Grain Boundaries on Mechanical Properties of GaN Nanowires[J]. Chin. Phys. Lett., 2011, 28(6): 1780-1783
[4] LI Bin, **, LI Chuan-Xi, WEI Cheng-Long, . Surface Effects on the Postbuckling of Nanowires[J]. Chin. Phys. Lett., 2011, 28(4): 1780-1783
[5] GU Fang, ZHANG Jia-Hong**, XU Lin-Hua, LIU Qing-Quan, LI Min . Influence of Surface Effects on the Elastic Properties of Silicon Nanowires with Different Cross Sections[J]. Chin. Phys. Lett., 2011, 28(10): 1780-1783
[6] QIU Ming-Xia, RUAN Shuang-Chen**, GAO Biao, HUO Kai-Fu, ZHAI Jian-Pang, LI Ling, LIAO Hui, XU Xin-Tong . H2-Assistance One-Step Growth of Si Nanowires and Their Growth Mechanism[J]. Chin. Phys. Lett., 2011, 28(10): 1780-1783
[7] XUE Cheng-Shan, LIU Wen-Jun, SHI Feng, ZHUANG Hui-Zhao, GUO Yong-Fu, CAO Yu-Ping, SUN Hai-Bo. Fabrication of Mn-Doped GaN Nanobars[J]. Chin. Phys. Lett., 2010, 27(3): 1780-1783
[8] YU Yan-Long, ZHENG Li-Hui, XU Xin, SUN Hong-Yu** . Thermal Expansion Behavior of Hexagonal ZnS Single-Crystal Nanowires Embedded in Anodized Aluminum Oxide Template[J]. Chin. Phys. Lett., 2010, 27(10): 1780-1783
[9] FU Xin, JIANG Jun, LIU Chao, YU Zhi-Yang, Steffan LEA, YUAN Jun,. Re-entrant-Groove-Assisted VLS Growth of Boron Carbide Five-Fold Twinned Nanowires[J]. Chin. Phys. Lett., 2009, 26(8): 1780-1783
[10] WU Er-Dong, GUO Xiu-Mei. Mn Nanowhiskers of a Novel Hexagonal Phase Grown from Hydrogen Activated Laves Phase Alloys[J]. Chin. Phys. Lett., 2008, 25(7): 1780-1783
[11] ZHANG Dong-Dong, XUE Cheng-Shan, ZHUANG Hui-Zhao, HUANG Ying-Long, WANG Zou-Ping, WANG Ying, GUO Yong-Fu. Fabrication and Characterization of Mg-Doped GaN Nanowires[J]. Chin. Phys. Lett., 2008, 25(11): 1780-1783
[12] ZHANG Chun-Zhi, GAO Hong, ZHANG Di, ZHANG Xi-Tian,. Homoepitaxial Growth and Optical Properties of ZnO Polar Nanoleaves[J]. Chin. Phys. Lett., 2008, 25(1): 1780-1783
[13] XUE Cheng-Shan, WU Yu-Xin, ZHUANG Hui-Zhao, TIAN De-Heng, LIU Yi-An, HE Jian-Ting, AI Yu-Jie, SUN Li-Li, WANG Fu-Xue, CAO Yu-Ping. Fabrication of Syringe-Shaped GaN Nanorods[J]. Chin. Phys. Lett., 2006, 23(3): 1780-1783
Viewed
Full text


Abstract