Chin. Phys. Lett.  2008, Vol. 25 Issue (5): 1746-1749    DOI:
Original Articles |
Sprout Branching of Tumour Capillary Network Growth: Fractal Dimension and Multifractal Structure
KOU Jian-Long1;LU Hang-Jun1,2;WU Feng-Min1;XU You-Sheng1
1Institute of Condensed Matter Physics, Zhejiang Normal University, Jinhua 3210042Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800
Cite this article:   
KOU Jian-Long, LU Hang-Jun, WU Feng-Min et al  2008 Chin. Phys. Lett. 25 1746-1749
Download: PDF(131KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A tumour vascular network, characterized as an irregularly stochastic growth, is different from the normal vascular network. We systematically analyse the
dependence of the branching. It is found that anastomosis of tumour on time is according to a number of tumour images, and both the fractal dimensions and multifractal spectra of the tumours are obtained. In the cases studied, the fractal dimensions of the tumour vascular network increase with time and the multifractal spectrum not only rises entirely but also shifts right. In addition, the best drug delivery stage is discussed according to the difference of the singularity exponent δα(δα=αmax}-αmin), which shows some change in the growth process of the tumour vascular network. A common underlying
principle is obtained from our analysis along with previous results.
Keywords: 47.55.Mh      47.53.+n      02.60.-n     
Received: 03 January 2008      Published: 29 April 2008
PACS:  47.55.Mh  
  47.53.+n (Fractals in fluid dynamics)  
  02.60.-n  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2008/V25/I5/01746
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
KOU Jian-Long
LU Hang-Jun
WU Feng-Min
XU You-Sheng
[1] St$\acute{e$phanou A, McKougall S R, Anderson A R A andChaplain M A J 2006 Math. Comput. Model 44 96
[2] Muthukkaruppan V R, Kubai Land Auerbach R 1982 J.Natl. Cancer Inst. 69 699
[3] Anderson A R A and Chaplain M A J 1998 Math. Biol. 60 857
[4] Folkmann J and Haudenschil C 1980 Nature 288551
[5] Folkmann J 1993 Cancer Medicine ed Holland J F et al(Philadelphia: LEA Febiger) p 153
[6] Gazit Y, Berk D A, Leunig M, Baxter L T and Jain R K 1995 Phys. Rev. Lett. 75 2428
[7] Pries A R, Secomb T W and Gaehtfens P 1998 Am. J.Physiol. Circ. Physiol 44 {H349
[8] Pries A R, Reglin B and Secomb T W 2001 Am. J.Physiol. Circ. Physiol 281 H1015
[9] Gamba A, Ambrosi D, Coniglio A, de Candia A, Di Talia S,Giraudo E and Serini G 2003 Phys. Rev. Lett. 90 118101
[10] Coniglio A, de Candia A, Di Talia S and Gamba A 2004 Phys. Rev. E 69 051910
[11] Tsafnat N, Tsafnat G, Lambert T D and Jones S K 2005 Phys. Med. Biol. 50 2937
[12] Lee D S, Rieger H and Bartha K 2006 Phys. Rev.Lett. 96 058104
[13] Niemist$\ddot{o$ A, Dunmire V, Yli-Harja O, Zhang W andShmulevich I 2005 Phys. Rev. E 72 062902
[14] Mandelbrot B B 1982 The Fractal Geometry of Nature(New York: Freeman)
[15] Baish J W and Jain R K 2000 Cancer Res. 60 3683
[16] Wu F M, Xu Y S and Li Q W 2006 Commun. Theor. Phys. 46 332
[17] Xu Y S, Wu F M, Chen Y Y and Xu X Z 2003 Chin.Phys. 12 0621
[18] Yu B M 2001 Fractals 9 365
[19] Xu S X and Mao X C 2001 Appl. Math. Mec. 22 {1183
[20] Fonta C, Risser L, Plourabou\'{e F, Steyer A, Cloetens P,G\'{eraldine Le Duc and Cerebr 2007 J. Blood. F. Met 27293
[21] Baish J W and Jain R K 1998 Nat. Med. 4 984
[22] Gazit Y, Baish J W, Safabakhsh N, Leunig M, Baxter L Tand Jain R K 1997 Microcirculation 4 395
[23] Pohlman S, Powell K A, Obuchowski N A, Chilcote W A andGrundfest-Broniatowski S 1996 Med. Phys. 23 1337
[24] Sto$\check{s$i$\grave{c$ T andSto$\check{s$i$\grave{c$ B K 2006 IEEE T. Med. Imaging. 25 1101
[25] Tasinkevych M, Tavares J M and de los Santos F 2006 J. Chem. Phys. 124 064706
[26] Li H, Ding Z J and Wu Z Q 1996 Phys. Rev. B 53 16631
[27] Hentschel H G E and Procaccia I 1983 Physica D 8435
Related articles from Frontiers Journals
[1] YUN Mei-Juan, ZHENG Wei. Fractal Analysis of Robertson-Stiff Fluid Flow in Porous Media[J]. Chin. Phys. Lett., 2012, 29(6): 1746-1749
[2] A. M. Salem. Temperature-Dependent Viscosity Effects on Non-Darcy Hydrodynamic Free Convection Heat Transfer from a Vertical Wedge in Porous Media[J]. Chin. Phys. Lett., 2010, 27(6): 1746-1749
[3] YUN Mei-Juan, YUE Yin, YU Bo-Ming, LU Jian-Duo, ZHENG Wei . A Geometrical Model for Tortuosity of Tortuous Streamlines in Porous Media with Cylindrical Particles[J]. Chin. Phys. Lett., 2010, 27(10): 1746-1749
[4] LI Jian-Hua, YU Bo-Ming, ZOU Ming-Qing. A Model for Fractal Dimension of Rough Surfaces[J]. Chin. Phys. Lett., 2009, 26(11): 1746-1749
[5] ZHANG Ji-Cheng, SONG Kao-Ping, LIU Li, YANG Er-Long. Investigation on Mechanisms of Polymer Enhanced Oil Recovery by Nuclear Magnetic Resonance and Microscopic Theoretical Analysis[J]. Chin. Phys. Lett., 2008, 25(5): 1746-1749
[6] ZHAO Si-Cheng, LIU Rong, LIU Qiu-Sheng. Thermocapillary Convection in an Inhomogeneous Porous Layer[J]. Chin. Phys. Lett., 2008, 25(2): 1746-1749
[7] YUN Mei-Juan, YU Bo-Ming, Xu Peng, CAI Jian-Chao. Fractal Analysis of Power-Law Fluid in a Single Capillary[J]. Chin. Phys. Lett., 2008, 25(2): 1746-1749
[8] KANG Yan-Mei, JIANG Yao-Lin. Long-Time Dynamic Response and Stochastic Resonance of Subdiffusive Overdamped Bistable Fractional Fokker--Planck Systems[J]. Chin. Phys. Lett., 2008, 25(10): 1746-1749
[9] SONG Fu-Quan, JIANG Ren-Jie, BIAN Shu-Li. Measurement of Threshold Pressure Gradient of Microchannels by Static Method[J]. Chin. Phys. Lett., 2007, 24(7): 1746-1749
[10] WANG Jin-Feng, LIU Yang, XU You-Sheng, WU Feng-Min. Lattice Boltzmann Simulation for the Optimized Surface Pattern in a Micro-Channel[J]. Chin. Phys. Lett., 2007, 24(10): 1746-1749
[11] YANG Er-Long, SONG Kao-Ping. Displacement Mechanism of Polymer Flooding by Molecular Tribology[J]. Chin. Phys. Lett., 2006, 23(9): 1746-1749
[12] ZHANG Ji-Cheng, LIU Li, SONG Kao-Ping. Neural Approach for Calculating Permeability of Porous Medium[J]. Chin. Phys. Lett., 2006, 23(4): 1746-1749
[13] JIANG Ren-Jie, SONG Fu-Quan, LI Hua-Mei. Flow Characteristics of Deionized Water in Microtubes[J]. Chin. Phys. Lett., 2006, 23(12): 1746-1749
[14] XU Jie, YU Bo-Ming, YUN Mei-Juan. Effect of Clusters on Thermal Conductivity in Nanofluids[J]. Chin. Phys. Lett., 2006, 23(10): 1746-1749
[15] LIAO Tian-He, GAO Qiong. Fractional Fourier Transform of Cantor Sets[J]. Chin. Phys. Lett., 2005, 22(9): 1746-1749
Viewed
Full text


Abstract