Chin. Phys. Lett.  2008, Vol. 25 Issue (5): 1750-1752    DOI:
Original Articles |
Investigation on Mechanisms of Polymer Enhanced Oil Recovery by Nuclear Magnetic Resonance and Microscopic Theoretical Analysis
ZHANG Ji-Cheng1;SONG Kao-Ping1;LIU Li2;YANG Er-Long1
1Key Laboratory of Enhanced Oil Recovery of Ministry of Education of China, Daqing Petroleum Institute, Daqing 1633182Institute of Porous Flow and Fluid Mechanics, National Petroleum Corporation of China, Langfang 065007
Cite this article:   
ZHANG Ji-Cheng, SONG Kao-Ping, LIU Li et al  2008 Chin. Phys. Lett. 25 1750-1752
Download: PDF(768KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Polymer flooding is an efficient technique to enhance oil recovery over water flooding. There are lots of discussions regarding the mechanisms for polymer flooding enhancing oil recovery. The main focus is whether polymer flooding
can increase sweep efficiency alone, or can increase both of sweep efficiency and displacement efficiency. We present a study on this problem. Oil displacement experiments on 4 natural cores show that polymer flooding can increase oil recovery efficiency by more than 12% over water. Moreover, photos are taken by the nuclear magnetic resonance (NMR) method both after water flooding and after polymer flooding, which show remaining oil saturation distribution at the middle cross section and the central longitudinal section. Analyses of these photos demonstrate that polymer flooding can increase both sweep efficiency and displacement efficiency.
Keywords: 47.55.Mh      47.50.+d      34.20.Gj     
Received: 02 January 2008      Published: 29 April 2008
PACS:  47.55.Mh  
  47.50.+d  
  34.20.Gj (Intermolecular and atom-molecule potentials and forces)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2008/V25/I5/01750
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHANG Ji-Cheng
SONG Kao-Ping
LIU Li
YANG Er-Long
[1] Wang X H, Han D K and Guo S P 1994 Acta Petroleum Sin. 15 83 (in Chinese)
[2]Zhao Y S et al %, Wei G Z, Lu H M and Zhong L2001 Acta Petroleum Sin. 22 43 (in Chinese)
[3]Xia H F, Wang D M and Liu Z C 2001 Acta Petroleum Sin. 22 60 (in Chinese)
[4]Wang Q M et al %, Ji B F, Sui J, Guo W K and Ji B Y2001 Petroleum Geology and Oilfield Development in Daqing 20 1 (in Chinese)
[5]Tian J P, Yao K L 2002 Chin. Phys. 11 358
[6]Tian J P, Yao K L 1998 Chin. Phys. 7 507
[7] Tian J P, Yao K L 1998 Chin. Phys. 8 577
[8] Tian J P, Yao K L 2001 Chin. Phys. 3 373
[9] Xu Y S, Wu F M 2002 Chin. Phys. 12 1835
[10]Zheng L C, Zhang X X 2003 Chin. Phys. 1 83
[11]Tabor D 1992 J. Phys. D: Appl. Phys. 25 1
[12]Xu J et al %, Luo J B, Lu X C, Wang L L, Pan G S and Wen S Z2005 Nanotechnology 16 859
[13] Tomlinson G A 1929 Philos. Magn. 7 905
[14]Wen S Z 1998 Nano-tribology (Beijing: TsinghuaUniversity Press) p150 (in Chinese)
[15] Amontons G 1706 Memories de l'Academie Royal(Amsterdam: Gerald Kuyper) p 257
[16]McClelland G M 1990 Surface Science Springer Series(Berlin: Springer) vol 17 p 1
[17] Frank F C and van der Merwe J H 1949 Proc. Roy. Soc. 198 216
[18] Shinjo K and Hirano M 1993 Surf. Sci. 283 473
Related articles from Frontiers Journals
[1] YUN Mei-Juan, ZHENG Wei. Fractal Analysis of Robertson-Stiff Fluid Flow in Porous Media[J]. Chin. Phys. Lett., 2012, 29(6): 1750-1752
[2] SONG Hua-Jie, HUANG Feng-Lei** . Accurately Predicting the Density and Hydrostatic Compression of Hexahydro-1,3,5-Trinitro-1,3,5-Triazine from First Principles[J]. Chin. Phys. Lett., 2011, 28(9): 1750-1752
[3] O. Bayrak**, A. Soylu, I. Boztosun . Effect of the Velocity-Dependent Potentials on the Bound State Energy Eigenvalues[J]. Chin. Phys. Lett., 2011, 28(4): 1750-1752
[4] FENG Yu-Liang, ZHANG Yuan, JI Bing-Yu, MU Wen-Zhi . Micro-acting Force in Boundary Layer in Low-Permeability Porous Media[J]. Chin. Phys. Lett., 2011, 28(2): 1750-1752
[5] A. M. Salem. Temperature-Dependent Viscosity Effects on Non-Darcy Hydrodynamic Free Convection Heat Transfer from a Vertical Wedge in Porous Media[J]. Chin. Phys. Lett., 2010, 27(6): 1750-1752
[6] YUN Mei-Juan, YUE Yin, YU Bo-Ming, LU Jian-Duo, ZHENG Wei . A Geometrical Model for Tortuosity of Tortuous Streamlines in Porous Media with Cylindrical Particles[J]. Chin. Phys. Lett., 2010, 27(10): 1750-1752
[7] LI Jian-Hua, YU Bo-Ming, ZOU Ming-Qing. A Model for Fractal Dimension of Rough Surfaces[J]. Chin. Phys. Lett., 2009, 26(11): 1750-1752
[8] A. Soylu, O. Bayrak, I. Boztosun. Exact Solutions of Klein--Gordon Equation with Scalar and Vector Rosen--Morse-Type Potentials[J]. Chin. Phys. Lett., 2008, 25(8): 1750-1752
[9] KOU Jian-Long, LU Hang-Jun, WU Feng-Min, XU You-Sheng. Sprout Branching of Tumour Capillary Network Growth: Fractal Dimension and Multifractal Structure[J]. Chin. Phys. Lett., 2008, 25(5): 1750-1752
[10] ZHAO Si-Cheng, LIU Rong, LIU Qiu-Sheng. Thermocapillary Convection in an Inhomogeneous Porous Layer[J]. Chin. Phys. Lett., 2008, 25(2): 1750-1752
[11] YUN Mei-Juan, YU Bo-Ming, Xu Peng, CAI Jian-Chao. Fractal Analysis of Power-Law Fluid in a Single Capillary[J]. Chin. Phys. Lett., 2008, 25(2): 1750-1752
[12] ZHENG Lian-Cun, ZHANG Xin-Xin, MA Lian-Xi. Fully Developed Convective Heat Transfer of Power Law Fluids in a Circular Tube[J]. Chin. Phys. Lett., 2008, 25(1): 1750-1752
[13] SONG Fu-Quan, JIANG Ren-Jie, BIAN Shu-Li. Measurement of Threshold Pressure Gradient of Microchannels by Static Method[J]. Chin. Phys. Lett., 2007, 24(7): 1750-1752
[14] CHEN Xue-Hui, ZHENG Lian-Cun, ZHANG Xin-Xin. MHD Boundary Layer Flow of a Non-Newtonian Fluid on a Moving Surface with a Power-Law Velocity[J]. Chin. Phys. Lett., 2007, 24(7): 1750-1752
[15] WANG Jin-Feng, LIU Yang, XU You-Sheng, WU Feng-Min. Lattice Boltzmann Simulation for the Optimized Surface Pattern in a Micro-Channel[J]. Chin. Phys. Lett., 2007, 24(10): 1750-1752
Viewed
Full text


Abstract