Chin. Phys. Lett.  2008, Vol. 25 Issue (4): 1407-1410    DOI:
Original Articles |
Direct Observation of Tunnelling through 100-nm-Wide All Metal Magnetic Junction into Si
Nam H. KIM1;WANG Ke-Qiang1,2;ZHANG Yu3;WANG Jian-Qing1
1Department of Physics, State University of New York, Binghamton, NY 13902, USA2School of Information, Zhongkai University of Agriculture and echnology, Guangzhou 5102253Department of Electrical Engineering, State University of New York, Binghamton, NY 13902, USA
Cite this article:   
Nam H. KIM, WANG Ke-Qiang, ZHANG Yu et al  2008 Chin. Phys. Lett. 25 1407-1410
Download: PDF(674KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Nanoscaled spin-dependent tunnelling lines were patterned on doped Si and studied for tunnelling from the SDT ferromagnetic layer through an insulating barrier into Si. The injection contacts have the form of long strips with width and separation, ranging from 100nm to 2μm, and are patterned using e-beam lithography. The measured I-V characteristics versus temperature (80 to 300K) on the 100nm scaled devices between the layered-magnetic metals and the semiconductor clearly showed ballistic tunnelling, with weak dependence on the temperature. This is qualitatively different, at elevated temperatures, from 2-μm-wide scaled-up spin-dependent tunnelling structures, where thermal-ionic emission was observed to dominate carrier transport.
Keywords: 72.25.Hg      73.23.Ad      73.40.Gk     
Received: 10 June 2007      Published: 31 March 2008
PACS:  72.25.Hg (Electrical injection of spin polarized carriers)  
  73.23.Ad (Ballistic transport)  
  73.40.Gk (Tunneling)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2008/V25/I4/01407
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Nam H. KIM
WANG Ke-Qiang
ZHANG Yu
WANG Jian-Qing
[1]Baibich M N, Broto J M, Fert A, van Dau F N, Petroff F,Etienne P, Creuzet G, Friederich A and Chazeles J 1988 Phys.Rev. Lett. 61 2472
[2] Binach G, Grunberg P, Saurenbach F and Zinn W 1989 Phys. Rev. B 39 4828
[3] Krebs J J, Lubitz P, Chaiken A and Prinz G A 1989 Phys. Rev. Lett. 63 1645
[4] Vidan A, Stopa M, Westervelt R M, Hanson M and Gossard A C2006 Phys. Rev. Lett. 96 156802
[5] Kikkawa J M and Awschalom D D 1998 Nature 397139141 Kikkawa J M and Awschalom D D 1998 Phys. Rev. Lett. 80 4313
[6] Wolf S A, Awshalom D D, Buhrman R A, Daughton J M, vonMonar S, Roukes M L, Chtchelkanova A Y and Treger D M 2001 Science 294 1405
[7] Schmidt G, Ferrand D, Molenkamp L W, Filip A T, and vanWees N J 2000 Phys. Rev. B 62 R4790
[8] Fert A and Jaffres H 2001 Phys. Rev. B 64184420
[9] Crooker S A, Furis M, Lou X, Adelmann C, Smith D L,Palmstr{\om C J, Crowell P A 2005 Science 309 2191
[10] Jiang X, Wang R, Shelby R M, Macfarlane R M, Bank S R,Harris J S and Parkin S S P 2005 Phys. Rev. Lett. 94056601
[11] Wang D, Daughton J M, Wang W, and Wang J-Q 2000 IEEETrans. Magn. 36 2802
[12] Tsybeskov L, Moore K L, Hall D G, and Fauchet, 1996 Phys. Rev. B 54 R8361
[13] Cardona M, Meyer T A, and Thewalt M L W, 2004 Phys.Rev. Lett. 92 196403-1
Related articles from Frontiers Journals
[1] FANG Dong-Kai, WU Shao-Quan, ZOU Cheng-Yi, ZHAO Guo-Ping. Effect of Electronic Correlations on Magnetotransport through a Parallel Double Quantum Dot[J]. Chin. Phys. Lett., 2012, 29(3): 1407-1410
[2] ZHAI Zhi-Yuan, YANG Tao, PAN Xiao-Yin**. Exact Propagator for the Anisotropic Two-Dimensional Charged Harmonic Oscillator in a Constant Magnetic Field and an Arbitrary Electric Field[J]. Chin. Phys. Lett., 2012, 29(1): 1407-1410
[3] JIANG Guo-Hui, ZHANG Yan-Hui**, BIAN Hong-Tao, XU Xue-You . Fractal Analysis of Transport Properties in a Sinai Billiard[J]. Chin. Phys. Lett., 2011, 28(12): 1407-1410
[4] WANG Li-Jun, ZHU Yu-Zhuan, WANG Xiao-Ping, ZHANG Shi, LIU Xin-Xin, LI Huai-Hui, MEI Cui-Yu, LIU Xiao-Fei. Field Electron Emission from Caterpillar-Like Clavae Nano-Structure Carbon Thin Films[J]. Chin. Phys. Lett., 2010, 27(8): 1407-1410
[5] DENG Hui-Xiong, JIANG Xiang-Wei, TANG Li-Ming. Quantum Mechanical Study on Tunnelling and Ballistic Transport of Nanometer Si MOSFETs[J]. Chin. Phys. Lett., 2010, 27(5): 1407-1410
[6] KONG Xiao-Lan, XIONG Yong-Jian. Resonance Transport of Graphene Nanoribbon T-Shaped Junctions[J]. Chin. Phys. Lett., 2010, 27(4): 1407-1410
[7] TIAN Gui-Hua, ZHONG Shu-Quan . A New Model For the Double Well Potential[J]. Chin. Phys. Lett., 2010, 27(10): 1407-1410
[8] CHI Feng, YUAN Xi-Qiu. Triple Quantum Dot Molecule as a Spin-Splitter[J]. Chin. Phys. Lett., 2009, 26(9): 1407-1410
[9] XU Zhang-Cheng, ZHANG Ya-Ting, Jø, rn M. Hvam, Yoshiji Horikoshi. Inter-Layer Energy Transfer through Wetting-Layer States in Bi-layer InGaAs/GaAs Quantum-Dot Structures with Thick Barriers[J]. Chin. Phys. Lett., 2009, 26(5): 1407-1410
[10] P. Ohlckers P. Pipinys. Comment on ``Electrical Conductivity and Current-Voltage Characteristics of Individual Conducting Polymer PEDOT Nanowires''[J]. Chin. Phys. Lett., 2009, 26(5): 1407-1410
[11] CHEN Zhi-Dong, ZHANG Jin-Yu, YU Zhi-Ping. Time-Dependent Transport in Nanoscale Devices[J]. Chin. Phys. Lett., 2009, 26(3): 1407-1410
[12] NI Jia-Ting, LIANG Xiao-Wan, CHEN Bin, T. Koga,. Spin Interference in Rectangle Loop Based on Rashba and Dresselhaus Spin-Orbit Interactions[J]. Chin. Phys. Lett., 2009, 26(12): 1407-1410
[13] FANG Ming, SUN Lian-Liang. Spin Filter Based on an Aharonov--Bohm Interferometer with Rashba Spin--Orbit Effect[J]. Chin. Phys. Lett., 2008, 25(9): 1407-1410
[14] REN Jun-Feng, XIU Ming-Xia. Effect of Carrier Differences on Spin Polarized Injection into Organic and Inorganic Semiconductors[J]. Chin. Phys. Lett., 2008, 25(7): 1407-1410
[15] LIU Hai-Qing, SU Shao-Kui, JING Xiu-nian, LIU Ying, LI Yan-rong, HE Lun-Hua, GE Pei-Wen, YAN Qi-Wei, WANG Yun-Ping. Shape Dependence of Low-Temperature Magnetic Relaxation of Mn12Ac[J]. Chin. Phys. Lett., 2008, 25(7): 1407-1410
Viewed
Full text


Abstract