Chin. Phys. Lett.  2008, Vol. 25 Issue (4): 1217-1219    DOI:
Original Articles |
On Solving the Lorenz System by Differential Transformation Method
M. Mossa Al-Sawalha; M. S. M. Noorani
School of Mathematical Sciences, University Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
Cite this article:   
M. Mossa Al-Sawalha, M. S. M. Noorani 2008 Chin. Phys. Lett. 25 1217-1219
Download: PDF(152KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The differential transformation method (DTM) is employed to solve a nonlinear differential equation, namely the Lorenz system. Numerical results are compared to those obtained by the Runge--Kutta method to illustrate the preciseness and effectiveness of the proposed method. In particular, we examine the accuracy of the (DTM) as the Lorenz system changes from a
non-chaotic system to a chaotic one. It is shown that the (DTM) is robust, accurate and easy to apply.
Keywords: 05.45.-a      05.10.-a      05.45.Pq     
Received: 10 December 2007      Published: 31 March 2008
PACS:  05.45.-a (Nonlinear dynamics and chaos)  
  05.10.-a (Computational methods in statistical physics and nonlinear dynamics)  
  05.45.Pq (Numerical simulations of chaotic systems)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2008/V25/I4/01217
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
M. Mossa Al-Sawalha
M. S. M. Noorani
[1] Chen C and Ho S 1996 Appl. Math. Comput. 79173
[2] Jang M J, Chen C and Liu Y C 2001 Appl. Math.Comput. 121 261
[3] Hassan H I 2004 Appl. Math. Comput. 154 299
[4] Hashim I, Noorani M S M, Ahmad R, Bakar S A, Ismail E Sand Zakaria A M 2006 Chaos, Solitons Fractals 281149
[5] Lorenz E N 1963 J. Atmosph. Sci. 20 130
Related articles from Frontiers Journals
[1] K. Fakhar, A. H. Kara. The Reduction of Chazy Classes and Other Third-Order Differential Equations Related to Boundary Layer Flow Models[J]. Chin. Phys. Lett., 2012, 29(6): 1217-1219
[2] ZHAI Liang-Jun, ZHENG Yu-Jun, DING Shi-Liang. Chaotic Dynamics of Triatomic Normal Mode Molecules[J]. Chin. Phys. Lett., 2012, 29(6): 1217-1219
[3] NIU Yao-Bin, WANG Zhong-Wei, DONG Si-Wei. Modified Homotopy Perturbation Method for Certain Strongly Nonlinear Oscillators[J]. Chin. Phys. Lett., 2012, 29(6): 1217-1219
[4] LIU Yan, LIU Li-Guang, WANG Hang. Study on Congestion and Bursting in Small-World Networks with Time Delay from the Viewpoint of Nonlinear Dynamics[J]. Chin. Phys. Lett., 2012, 29(6): 1217-1219
[5] Paulo C. Rech. Dynamics in the Parameter Space of a Neuron Model[J]. Chin. Phys. Lett., 2012, 29(6): 1217-1219
[6] YAN Yan-Zong, WANG Cang-Long, SHAO Zhi-Gang, YANG Lei. Amplitude Oscillations of the Resonant Phenomena in a Frenkel–Kontorova Model with an Incommensurate Structure[J]. Chin. Phys. Lett., 2012, 29(6): 1217-1219
[7] MEI Li-Jie,WU Xin**,LIU Fu-Yao. A New Class of Scaling Correction Methods[J]. Chin. Phys. Lett., 2012, 29(5): 1217-1219
[8] LI Jian-Ping,YU Lian-Chun,YU Mei-Chen,CHEN Yong**. Zero-Lag Synchronization in Spatiotemporal Chaotic Systems with Long Range Delay Couplings[J]. Chin. Phys. Lett., 2012, 29(5): 1217-1219
[9] JIANG Jun**. An Effective Numerical Procedure to Determine Saddle-Type Unstable Invariant Limit Sets in Nonlinear Systems[J]. Chin. Phys. Lett., 2012, 29(5): 1217-1219
[10] FANG Ci-Jun,LIU Xian-Bin**. Theoretical Analysis on the Vibrational Resonance in Two Coupled Overdamped Anharmonic Oscillators[J]. Chin. Phys. Lett., 2012, 29(5): 1217-1219
[11] XIE Zheng, YI Dong-Yun, OUYANG Zhen-Zheng, LI Dong. Hyperedge Communities and Modularity Reveal Structure for Documents[J]. Chin. Phys. Lett., 2012, 29(3): 1217-1219
[12] WEI Du-Qu, LUO Xiao-Shu, ZHANG Bo. Noise-Induced Voltage Collapse in Power Systems[J]. Chin. Phys. Lett., 2012, 29(3): 1217-1219
[13] ZHENG Yong-Ai. Adaptive Generalized Projective Synchronization of Takagi-Sugeno Fuzzy Drive-response Dynamical Networks with Time Delay[J]. Chin. Phys. Lett., 2012, 29(2): 1217-1219
[14] SUN Mei, CHEN Ying, CAO Long, WANG Xiao-Fang. Adaptive Third-Order Leader-Following Consensus of Nonlinear Multi-agent Systems with Perturbations[J]. Chin. Phys. Lett., 2012, 29(2): 1217-1219
[15] REN Sheng, ZHANG Jia-Zhong, LI Kai-Lun. Mechanisms for Oscillations in Volume of Single Spherical Bubble Due to Sound Excitation in Water[J]. Chin. Phys. Lett., 2012, 29(2): 1217-1219
Viewed
Full text


Abstract