Chin. Phys. Lett.  2008, Vol. 25 Issue (4): 1220-1223    DOI:
Original Articles |
Stochastic Simulation of Turing Patterns
FU Zheng-Ping1;XU Xin-Hang1;WANG Hong-Li1,2,3;OUYANG Qi 1,2,3
1School of Physics, Peking University, Beijing 1008712Center for Theoretical Biology, Peking University, Beijing 1008713The Beijing--Hongkong--Singapore Joint Center for Nonlinear and Complex Systems (PKU), Peking University, Beijing 100871
Cite this article:   
FU Zheng-Ping, XU Xin-Hang, WANG Hong-Li et al  2008 Chin. Phys. Lett. 25 1220-1223
Download: PDF(2213KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We investigate the effects of intrinsic noise on Turing pattern formation near the onset of bifurcation from the homogeneous state to Turing pattern in the reaction--diffusion Brusselator. By performing stochastic simulations of the master equation and using Gillespie's algorithm, we check the spatiotemporal
behaviour influenced by internal noises. We demonstrate that the patterns of occurrence frequency for the reaction and diffusion processes are also spatially ordered and temporally stable. Turing patterns are found to be robust against intrinsic fluctuations. Stochastic simulations also reveal that under the influence of intrinsic noises, the onset of Turing instability is advanced in comparison to that predicted deterministically.
Keywords: 05.45.-a      05.40.-a      02.50.-r     
Received: 20 November 2007      Published: 31 March 2008
PACS:  05.45.-a (Nonlinear dynamics and chaos)  
  05.40.-a (Fluctuation phenomena, random processes, noise, and Brownian motion)  
  02.50.-r (Probability theory, stochastic processes, and statistics)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2008/V25/I4/01220
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
FU Zheng-Ping
XU Xin-Hang
WANG Hong-Li
OUYANG Qi
[1]Turing A M 1952 Trans. R. Soc. London B 237 37
[2] Cross M C and Hohenberg P C 1993 Rev. Mod. Phys. 65 851
[3] Horsthemke W and Lefever R 1984 Noise-InducedTransitions (Berlin: Springer)
[4] Gammaitoni L, Hanggi P, Jung P and Marchesoni F 1998 Rev. Mod. Phys. 70 233
[5] Van den Broeck C, Parrondo J M and Toral R 1994 Phys.Rev. Lett. 73 3395
[6] Buceta J et al 2003 Phys. Rev. E 67 021113
[7] Santos M A and Sancho J M 1999 Phys. Rev. E 5998
[8] Jung P and Mayer-Kress G 1995 Phys. Rev. Lett. 74 2130
[9] Wang H and Ouyang Q 2002 Phys. Rev. E 65046206 Wang H 2004 Phys. Rev. Lett. 93 154101 Wang H and Ouyang Q 2005 Chaos 15 023702
[10] Nitzan A, Ortoleva P, Deutch R and Ross J 1974 J.Chem. Phys. 61 1056
[11] Hochberg D et al 2006 Phys. Rev. E 73 066109
[12] Nicolis G and Prigogine I 1977 Self-Organization inNonequilibrium Systems (New York: Wiley-Interscience)
[13] Voroney J et al 1996 Physica D 99 303
[14] Boon J P et al 1996 Phys. Rep. 273 55
[15] Bird G A 1976 Molecular Gas Dynamics (Oxford:Clarendon)
[16] Gillespie D 1977 J. Phys. Chem. 81 2340
[17] Pe\~{na B and Perez-Garcia C 2001 Phys. Rev. E 64 056213
[18] Gibson M A and Bruck J 2000 J. Phys. Chem. A 104 1876
[19] Gillespie D T 1976 J. Comput. Phys. 22 402
[20] Matthias W 2003 Phy. Rev. E 68 036213
Related articles from Frontiers Journals
[1] K. Fakhar, A. H. Kara. The Reduction of Chazy Classes and Other Third-Order Differential Equations Related to Boundary Layer Flow Models[J]. Chin. Phys. Lett., 2012, 29(6): 1220-1223
[2] ZHAI Liang-Jun, ZHENG Yu-Jun, DING Shi-Liang. Chaotic Dynamics of Triatomic Normal Mode Molecules[J]. Chin. Phys. Lett., 2012, 29(6): 1220-1223
[3] NIU Yao-Bin, WANG Zhong-Wei, DONG Si-Wei. Modified Homotopy Perturbation Method for Certain Strongly Nonlinear Oscillators[J]. Chin. Phys. Lett., 2012, 29(6): 1220-1223
[4] BAI Zhan-Wu. Role of the Bath Spectrum in the Specific Heat Anomalies of a Damped Oscillator[J]. Chin. Phys. Lett., 2012, 29(6): 1220-1223
[5] LIU Yan, LIU Li-Guang, WANG Hang. Study on Congestion and Bursting in Small-World Networks with Time Delay from the Viewpoint of Nonlinear Dynamics[J]. Chin. Phys. Lett., 2012, 29(6): 1220-1223
[6] Paulo C. Rech. Dynamics in the Parameter Space of a Neuron Model[J]. Chin. Phys. Lett., 2012, 29(6): 1220-1223
[7] YAN Yan-Zong, WANG Cang-Long, SHAO Zhi-Gang, YANG Lei. Amplitude Oscillations of the Resonant Phenomena in a Frenkel–Kontorova Model with an Incommensurate Structure[J]. Chin. Phys. Lett., 2012, 29(6): 1220-1223
[8] LI Jian-Ping,YU Lian-Chun,YU Mei-Chen,CHEN Yong**. Zero-Lag Synchronization in Spatiotemporal Chaotic Systems with Long Range Delay Couplings[J]. Chin. Phys. Lett., 2012, 29(5): 1220-1223
[9] JIANG Jun**. An Effective Numerical Procedure to Determine Saddle-Type Unstable Invariant Limit Sets in Nonlinear Systems[J]. Chin. Phys. Lett., 2012, 29(5): 1220-1223
[10] FANG Ci-Jun,LIU Xian-Bin**. Theoretical Analysis on the Vibrational Resonance in Two Coupled Overdamped Anharmonic Oscillators[J]. Chin. Phys. Lett., 2012, 29(5): 1220-1223
[11] SHU Chang-Zheng,NIE Lin-Ru**,ZHOU Zhong-Rao. Stochastic Resonance-Like and Resonance Suppression-Like Phenomena in a Bistable System with Time Delay and Additive Noise[J]. Chin. Phys. Lett., 2012, 29(5): 1220-1223
[12] DUAN Wen-Qi. Formation Mechanism of the Accumulative Magnification Effect in a Financial Time Series[J]. Chin. Phys. Lett., 2012, 29(3): 1220-1223
[13] TIAN Liang, LIN Min. Relaxation of Evolutionary Dynamics on the Bethe Lattice[J]. Chin. Phys. Lett., 2012, 29(3): 1220-1223
[14] REN Xue-Zao, YANG Zi-Mo, WANG Bing-Hong, ZHOU Tao. Mandelbrot Law of Evolving Networks[J]. Chin. Phys. Lett., 2012, 29(3): 1220-1223
[15] WEI Du-Qu, LUO Xiao-Shu, ZHANG Bo. Noise-Induced Voltage Collapse in Power Systems[J]. Chin. Phys. Lett., 2012, 29(3): 1220-1223
Viewed
Full text


Abstract