Chin. Phys. Lett.  2008, Vol. 25 Issue (4): 1205-1208    DOI:
Original Articles |
Number-Phase Quantization and Deriving Energy-Level Gap of Two LC Circuits with Mutual-Inductance
MENG Xiang-Guo1;WANG Ji-Suo1;ZHAI Yun2;FAN Hong-Yi 3,4
1Department of Physics, Liaocheng University, Shandong 2520592School of Computer Science, Liaocheng University, Shandong 2520593Department of Physics, Shanghai Jiao Tong University, Shanghai 2000304Department of Material Science and Engineering, University of Science and Technology of China, Hefei 230026
Cite this article:   
MENG Xiang-Guo, WANG Ji-Suo, ZHAI Yun et al  2008 Chin. Phys. Lett. 25 1205-1208
Download: PDF(126KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract For two LC circuits with mutual-inductance, we introduce a new quantization scheme in the context of number-phase quantization through the standard Lagrangian formalism. The commutative relation between the charge operator and the magnetic flux operator is derived. Then we use the Heisenberg
equation of motion to obtain the current and voltage equation across the inductance and capacity. The results clearly show how the current and voltage in a single LC circuit are affected by the circuit parameters and inductance coupling coefficient. In addition, adopting invariant eigen-operator method the energy-level gap of the dynamic Hamiltonian which describes two LC circuits with mutual-inductance is obtained.
Keywords: 04.60.Ds      73.23.-b      84.30.-r     
Received: 15 December 2007      Published: 31 March 2008
PACS:  04.60.Ds (Canonical quantization)  
  73.23.-b (Electronic transport in mesoscopic systems)  
  84.30.-r (Electronic circuits)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2008/V25/I4/01205
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
MENG Xiang-Guo
WANG Ji-Suo
ZHAI Yun
FAN Hong-Yi
[1]Louisell W H 1973 Quantum Statistical Properties ofRadiation (New York: Wiley)
[2] Landauer R 1957 IBM J. Res. Dev. 1 223
[3] Buot F A 1993 Phys. Rep. 234 73
[4] Garcia R G 1992 Appl. Phys. Lett. 60 1960
[5] Xu X L, Li H Q and Wang J S 2007 Chin. Phys. 16 2462
[6] Wang J S et al 2001 Phys. Lett. A 281 341 Wang J S et al 2000 Phys. Lett. A 276 155
[7] Chen B and Li Y Q 1995 Phys. Lett. A 205 121 Li Y Q and Chen B 1996 Phys. Rev. B 53 4027
[8] Fan H Y et al 2002 Phys. Lett. A 305 222
[9] Fan H Y and Pan X Y 1998 Chin. Phys. Lett. 15625
[10] Fan H Y 2003 Int. J. Mod. Phys. B 17 2599 18 (2004) 233 Fan H Y et al 2006 Mod. Phys. Lett. B 20 1041
[11] Josephson B D 1964 Rev. Mod. Phys. 36 216 Josephson B D 1965 Adv. Phys. 36 419
[12] Feynman R P, Leighton R B and Sands M 1965 TheFeynman Lectures in Physics (Reading, MA: Addison-Wesley)
[13] Vourdas A 1994 Phys. Rev. B 49 12040 Vourdas A 1996 J. Mod. Opt. 43 2105
[14] Fan H Y et al 2007 Int. J. Mod. Phys. B 213697 Fan H Y et al 2006 Phys. Lett. A 359 580
[15] Fan H Y and Li C 2004 Phys. Lett. A 321 75
Related articles from Frontiers Journals
[1] ZHAO Peng**,LIU De-Sheng,. Electronic Transport Properties of an Anthraquinone-Based Molecular Switch with Carbon Nanotube Electrodes[J]. Chin. Phys. Lett., 2012, 29(4): 1205-1208
[2] XIA Cai-Juan**, LIU De-Sheng, ZHANG Ying-Tang . Electronic Transport Properties of a Naphthopyran-Based Optical Molecular Switch: an ab initio Study[J]. Chin. Phys. Lett., 2011, 28(9): 1205-1208
[3] ZHAO Peng**, LIU De-Sheng, ZHANG Ying, WANG Pei-Ji, ZHANG Zhong . Rectifying Properties of a Nitrogen/Boron-Doped Capped-Carbon-Nanotube-Based Molecular Junction[J]. Chin. Phys. Lett., 2011, 28(4): 1205-1208
[4] ZHENG Ji-Ming, HUANG Yao-Qing**, REN Zhao-Yu, YANG Hui-Jing, CAO Mao-Sheng** . Electronic Non-Resonant Tunneling through Diaminoacenes: A First-Principles Investigation[J]. Chin. Phys. Lett., 2011, 28(2): 1205-1208
[5] ZHOU Li-Ling . Unique Properties of Heat Generation in Nanoscale Systems[J]. Chin. Phys. Lett., 2011, 28(12): 1205-1208
[6] CAO Wen-Qiang, , LU Ming-Ming, WEN Bo, CHEN Yuan-Lu, LI Hong-Bo, YUAN Jie**, CAO Mao-Sheng** . MWCNTs/SiO2 Composite System: Carrier Transmission, Twin-Percolation and Dielectric Properties[J]. Chin. Phys. Lett., 2011, 28(10): 1205-1208
[7] Attia A. Awadalla, Adel H. Phillips** . Thermal Shot Noise through Boundary Roughness of Carbon Nanotube Quantum Dots[J]. Chin. Phys. Lett., 2011, 28(1): 1205-1208
[8] ZHANG Qing-Yun, WANG Bai-Geng, SHEN Rui, XING Ding-Yu. Generation and Quantum Interference of Entangled Electron-Hole Pairs in a Hanbury Brown and Twiss Interferometer[J]. Chin. Phys. Lett., 2010, 27(9): 1205-1208
[9] CHEN Zhi-Dong, ZHANG Jin-Yu, YU Zhi-Ping. Numerical Analysis of Alternating-Current Small-Signal Response in Graphene Nanoribbons[J]. Chin. Phys. Lett., 2010, 27(8): 1205-1208
[10] EN Yun-Fei, ZHU Zhang-Ming, HAO Yue. An Interconnect Bus Power Optimization Method[J]. Chin. Phys. Lett., 2010, 27(7): 1205-1208
[11] WANG Jing, LIANG Yun-Ye, CHEN Hao, WANG Peng, R. Note, H. Mizuseki, Y. Kawazoe. Self-Consistent Study of Conjugated Aromatic Molecular Transistors[J]. Chin. Phys. Lett., 2010, 27(6): 1205-1208
[12] LIN Liang-Zhong, ZHU Rui, DENG Wen-Ji. Shot Noise in Aharonov-Casher Rings[J]. Chin. Phys. Lett., 2010, 27(6): 1205-1208
[13] LI Jin-Liang, LI Yu-Xian. Spin Current Through Triple Quantum Dot in the Presence of Rashba Spin-Orbit Interaction[J]. Chin. Phys. Lett., 2010, 27(5): 1205-1208
[14] KONG Xiao-Lan, XIONG Yong-Jian. Resonance Transport of Graphene Nanoribbon T-Shaped Junctions[J]. Chin. Phys. Lett., 2010, 27(4): 1205-1208
[15] ZHAO Peng, ZHANG Zhong, WANG Pei-Ji, ZHANG Hai-Kui, REN Miao-Juan, LI Feng. Effects of End Termination on Electronic Transport in a Molecular Switch[J]. Chin. Phys. Lett., 2010, 27(2): 1205-1208
Viewed
Full text


Abstract