Original Articles |
|
|
|
|
Numerical Investigation of Noise Enhanced Stability Phenomenon in a Time-Delayed Metastable System |
JIA Zheng-Lin |
Department of Physics, Yuxi Normal University, Yuxi 653100 |
|
Cite this article: |
JIA Zheng-Lin 2008 Chin. Phys. Lett. 25 1209-1212 |
|
|
Abstract The transient properties of a time-delayed metastable system subjected to the additive white noise are investigated by means of the stochastic simulation method. The noise enhanced stability phenomenon (NES) can be observed in this system and the effect of the delay time on the NES shows a critical behaviour, i.e., there is a critical value of the delay time τc≈1, above which the time delay enhances the NES effect with the delay time increasing and below which the time delay weakens the NES effect as the delay time increases.
|
Keywords:
05.40.Ca
02.50.-r
02.60.Cb
|
|
Received: 13 January 2008
Published: 31 March 2008
|
|
PACS: |
05.40.Ca
|
(Noise)
|
|
02.50.-r
|
(Probability theory, stochastic processes, and statistics)
|
|
02.60.Cb
|
(Numerical simulation; solution of equations)
|
|
|
|
|
[1] Spagnolo B, Agudov N V and Dubkov A A 2004 Acta Phys.Pol. B 35 1419 [2] Spagnolo B et al 2007 Acta Phys. Pol. B 381925 [3] Li J H 2007 J. Stat. Mech. 09 09004 Li J H 2007 J. Phys. A 40 621 Li J H and Han Y X 2006 Phys. Rev. E 74 041118 Li J H and Han Y X 2006 Phys. Lett. A 359 573 Li J H et al 1999 Phys. Rev. E 60 6443 Li J H et al 1999 Phys. Rev. E 60 1324 Doering C R and Gadoua J C 1992 Phys. Rev. Lett. 69 2318 Mantegna R N and Spagnolo B 2000 Phys. Rev. Lett. 84 3025 [4] Fiasconaro A, Spagnolo B and Boccaletti S 2005 Phys.Rev. E 72 061110 [5] Fiasconaro A, Spagnolo B, Ochab-Marcinek A andGudowska-Nowak E 2006 Phys. Rev. E 74 041904 [6] Hurtado P I, Marro J and Garrido P L 2004 Phys.Rev. E 69 056225 [7] Mantegna R N and Spagnolo B 1996 Phys. Rev. Lett. 76 563 [8] Agudov N V and Spagnolo B 2001 Phys. Rev. E 64035102 [9] Dubkov A A, Agudov N V and Spagnolo B 2004 Phys.Rev. E 69 061103 [10] Fiasconaro A, Valenti D and Spagnolo B 2003 PhysicaA 325 136 [11] Agudov N V, Mannella R, Safonov A V and Spagnolo B 2004 J. Phys. A 37 5279 [12] Sun G et al 2007 Phys. Rev. E 75 021107 [13] Mantegna R N and Spagnolo B 1998 Int. J. Bifurcationand Chaos 8 783 [14] Xie C W and Mei D C 2003 Chin. Phys. Lett. 20813 [15] Mei D C, Xie G Z, Cao L and Wu D J 1999 Phys. Rev.E 59 3880 [16] Dayan I, Gitterman M and Weiss G H 1992 Phys. Rev.A 46 757 [17] Frank T D 2005 Phys. Rev. E 71 031106 [18] Guillouzic S, L'Heureux I and Longtin A 1999 Phys.Rev. E 59 3970 [19] Wu D and Zhu S Q 2006 Phys. Rev. E 73 051107 [20] Patanarapeelert K et al 2006 Phys. Rev. E 73021901 [21] Nie L R and Mei D C 2007 Eur. Phys. Lett. B 79 20005 [22] Nie L R and Mei D C 2007 Chin. Phys. Lett. 243074 [23] Guillouzic S, L'Heureux I and Longtin A 2000 Phys.Rev. E 61 4906 [24] Ochab-Marcinek A and Gudowska-Nowak E 2004 PhysicaA 343 557 [25] Dong X J 2007 Acta Phys. Sin. 56 5618 (inChinese) [26] Wang J Y, Zhu C L, Jia Y and Li J R 2006 Chin. Phys.Lett. 23 1398 [27] Gardiner C W 1983 Handbook of Stochastic Methods(Berlin: Springer) chap 5 p 136 [28] Sancho J M, San Miguel M, Katz S L and Gunton J D 1982 Phys. Rev. A 26 1589 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|