Chin. Phys. Lett.  2008, Vol. 25 Issue (4): 1209-1212    DOI:
Original Articles |
Numerical Investigation of Noise Enhanced Stability Phenomenon in a Time-Delayed Metastable System
JIA Zheng-Lin
Department of Physics, Yuxi Normal University, Yuxi 653100
Cite this article:   
JIA Zheng-Lin 2008 Chin. Phys. Lett. 25 1209-1212
Download: PDF(124KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The transient properties of a time-delayed metastable system subjected to the additive white noise are investigated by means of the stochastic simulation method. The noise enhanced stability phenomenon (NES) can be
observed in this system and the effect of the delay time on the NES shows a critical behaviour, i.e., there is a critical value of the delay time τc≈1, above which the time delay enhances the NES effect with the delay time increasing and below which the time delay weakens the NES effect as the delay time
increases.
Keywords: 05.40.Ca      02.50.-r      02.60.Cb     
Received: 13 January 2008      Published: 31 March 2008
PACS:  05.40.Ca (Noise)  
  02.50.-r (Probability theory, stochastic processes, and statistics)  
  02.60.Cb (Numerical simulation; solution of equations)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2008/V25/I4/01209
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
JIA Zheng-Lin
[1] Spagnolo B, Agudov N V and Dubkov A A 2004 Acta Phys.Pol. B 35 1419
[2] Spagnolo B et al 2007 Acta Phys. Pol. B 381925
[3] Li J H 2007 J. Stat. Mech. 09 09004 Li J H 2007 J. Phys. A 40 621 Li J H and Han Y X 2006 Phys. Rev. E 74 041118 Li J H and Han Y X 2006 Phys. Lett. A 359 573 Li J H et al 1999 Phys. Rev. E 60 6443 Li J H et al 1999 Phys. Rev. E 60 1324 Doering C R and Gadoua J C 1992 Phys. Rev. Lett. 69 2318 Mantegna R N and Spagnolo B 2000 Phys. Rev. Lett. 84 3025
[4] Fiasconaro A, Spagnolo B and Boccaletti S 2005 Phys.Rev. E 72 061110
[5] Fiasconaro A, Spagnolo B, Ochab-Marcinek A andGudowska-Nowak E 2006 Phys. Rev. E 74 041904
[6] Hurtado P I, Marro J and Garrido P L 2004 Phys.Rev. E 69 056225
[7] Mantegna R N and Spagnolo B 1996 Phys. Rev. Lett. 76 563
[8] Agudov N V and Spagnolo B 2001 Phys. Rev. E 64035102
[9] Dubkov A A, Agudov N V and Spagnolo B 2004 Phys.Rev. E 69 061103
[10] Fiasconaro A, Valenti D and Spagnolo B 2003 PhysicaA 325 136
[11] Agudov N V, Mannella R, Safonov A V and Spagnolo B 2004 J. Phys. A 37 5279
[12] Sun G et al 2007 Phys. Rev. E 75 021107
[13] Mantegna R N and Spagnolo B 1998 Int. J. Bifurcationand Chaos 8 783
[14] Xie C W and Mei D C 2003 Chin. Phys. Lett. 20813
[15] Mei D C, Xie G Z, Cao L and Wu D J 1999 Phys. Rev.E 59 3880
[16] Dayan I, Gitterman M and Weiss G H 1992 Phys. Rev.A 46 757
[17] Frank T D 2005 Phys. Rev. E 71 031106
[18] Guillouzic S, L'Heureux I and Longtin A 1999 Phys.Rev. E 59 3970
[19] Wu D and Zhu S Q 2006 Phys. Rev. E 73 051107
[20] Patanarapeelert K et al 2006 Phys. Rev. E 73021901
[21] Nie L R and Mei D C 2007 Eur. Phys. Lett. B 79 20005
[22] Nie L R and Mei D C 2007 Chin. Phys. Lett. 243074
[23] Guillouzic S, L'Heureux I and Longtin A 2000 Phys.Rev. E 61 4906
[24] Ochab-Marcinek A and Gudowska-Nowak E 2004 PhysicaA 343 557
[25] Dong X J 2007 Acta Phys. Sin. 56 5618 (inChinese)
[26] Wang J Y, Zhu C L, Jia Y and Li J R 2006 Chin. Phys.Lett. 23 1398
[27] Gardiner C W 1983 Handbook of Stochastic Methods(Berlin: Springer) chap 5 p 136
[28] Sancho J M, San Miguel M, Katz S L and Gunton J D 1982 Phys. Rev. A 26 1589
Related articles from Frontiers Journals
[1] SHU Chang-Zheng,NIE Lin-Ru**,ZHOU Zhong-Rao. Stochastic Resonance-Like and Resonance Suppression-Like Phenomena in a Bistable System with Time Delay and Additive Noise[J]. Chin. Phys. Lett., 2012, 29(5): 1209-1212
[2] S. S. Dehcheshmeh*,S. Karimi Vanani,J. S. Hafshejani. Operational Tau Approximation for the Fokker–Planck Equation[J]. Chin. Phys. Lett., 2012, 29(4): 1209-1212
[3] REN Xue-Zao, YANG Zi-Mo, WANG Bing-Hong, ZHOU Tao. Mandelbrot Law of Evolving Networks[J]. Chin. Phys. Lett., 2012, 29(3): 1209-1212
[4] CAI Jia-Xiang, MIAO Jun. New Explicit Multisymplectic Scheme for the Complex Modified Korteweg-de Vries Equation[J]. Chin. Phys. Lett., 2012, 29(3): 1209-1212
[5] LI Zhi-Ming, JIANG Hai-Ying, HAN Yan-Bin, LI Jin-Ping, YIN Jian-Qin, ZHANG Jin-Cheng. Temperature Uniformity of Wafer on a Large-Sized Susceptor for a Nitride Vertical MOCVD Reactor[J]. Chin. Phys. Lett., 2012, 29(3): 1209-1212
[6] LI Shao-Wu, WANG Jian-Ping. Finite Spectral Semi-Lagrangian Method for Incompressible Flows[J]. Chin. Phys. Lett., 2012, 29(2): 1209-1212
[7] Seoung-Hwan Park**, Yong-Tae Moon, Jeong Sik Lee, Ho Ki Kwon, Joong Seo Park, Doyeol Ahn . Optical Gain Analysis of Graded InGaN/GaN Quantum-Well Lasers[J]. Chin. Phys. Lett., 2011, 28(7): 1209-1212
[8] LV Zhong-Quan, XUE Mei, WANG Yu-Shun, ** . A New Multi-Symplectic Scheme for the KdV Equation[J]. Chin. Phys. Lett., 2011, 28(6): 1209-1212
[9] LI Chun, MEI Dong-Cheng, ** . Effects of Time Delay on Stability of an Unstable State in a Bistable System with Correlated Noises[J]. Chin. Phys. Lett., 2011, 28(4): 1209-1212
[10] LU Hong**, BAO Jing-Dong . Time Evolution of a Harmonic Chain with Fixed Boundary Conditions[J]. Chin. Phys. Lett., 2011, 28(4): 1209-1212
[11] DONG He-Fei, HONG Tao**, ZHANG De-Liang . Application of the CE/SE Method to a Two-Phase Detonation Model in Porous Media[J]. Chin. Phys. Lett., 2011, 28(3): 1209-1212
[12] R. Mokhtari**, A. Samadi Toodar, N. G. Chegini . Numerical Simulation of Coupled Nonlinear Schrödinger Equations Using the Generalized Differential Quadrature Method[J]. Chin. Phys. Lett., 2011, 28(2): 1209-1212
[13] SHEN Hua, LIU Kai-Xin, **, ZHANG De-Liang . Three-Dimensional Simulation of Detonation Propagation in a Rectangular Duct by an Improved CE/SE Scheme[J]. Chin. Phys. Lett., 2011, 28(12): 1209-1212
[14] SONG Yan-Li . Frequency Effect of Harmonic Noise on the FitzHugh–Nagumo Neuron Model[J]. Chin. Phys. Lett., 2011, 28(12): 1209-1212
[15] HE Zheng-You, ZHOU Yu-Rong** . Vibrational and Stochastic Resonance in the FitzHugh–Nagumo Neural Model with Multiplicative and Additive Noise[J]. Chin. Phys. Lett., 2011, 28(11): 1209-1212
Viewed
Full text


Abstract