Chin. Phys. Lett.  2008, Vol. 25 Issue (4): 1168-1171    DOI:
Original Articles |
Two Kinds of Square-Conservative Integrators for Nonlinear Evolution Equations
CHEN Jing-Bo;LIU Hong
Institute of Geology and Geophysics, Chinese Academy of Sciences, PO Box 9825, Beijing 100029
Cite this article:   
CHEN Jing-Bo, LIU Hong 2008 Chin. Phys. Lett. 25 1168-1171
Download: PDF(182KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Based on the Lie-group and Gauss--Legendre methods, two kinds of square-conservative integrators for square-conservative nonlinear evolution equations are presented. Lie-group based square-conservative integrators are linearly implicit, while Gauss--Legendre based square-conservative integrators are nonlinearly implicit and iterative schemes are needed to solve the corresponding integrators. These two kinds of integrators provide natural candidates for simulating square-conservative nonlinear evolution equations in the sense that these integrators not only preserve the square-conservative properties of the continuous equations but also are nonlinearly stable. Numerical experiments are performed to test the presented integrators.
Keywords: 02.60.Cb      02.70.Bf      05.45.Yv     
Received: 14 November 2007      Published: 31 March 2008
PACS:  02.60.Cb (Numerical simulation; solution of equations)  
  02.70.Bf (Finite-difference methods)  
  05.45.Yv (Solitons)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2008/V25/I4/01168
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
CHEN Jing-Bo
LIU Hong
[1] Sanz-serna J M and Calvo M 1994 Numerical Hamiltonian problems (London: Chapman and Hall)
[2] Sidlichovsky M 1996 Celes. Mech. Dyn. Astron. 65 69
[3] Tsitouras Ch 1999 Celes. Mech. Dyn. Astron. 74 223
[4] Bridges T J et al % and Reish S2006 J. Phys. A: {\it Math.Gen. 39 5287
[5] Chen J B 2006 Geophysics 71 T151
[6] Chen J B et al % Munthe-Kaas H and Qin M Z2002 SIAM J.Numer. Anal. 39 2164
[7] Feng K 1993 The Collected Works of Feng Kang (Beijing:Defence Industrial Press)
[8] Hairer E et al %, Lubich C and Warnner G2002 Geometric NumericalIntegration (Berlin: Springer)
[9] Iserles A et al %, Munthe-Kaas H, N\o rsett S P and Zanna A2000 Acta Numerica 9 215
[10] Richtmyer R D and Morton K W 1967 Difference Methods forInitial-Value Problems (New York: Interscience)
[11] Eng\o K 2000 BIT 40 41
[12] Cooper G J 1987 IMA J. Numer. Anal. 7 1
[13] Zabusky N J et al % and Kruskal M D1965 Phys. Rev. Lett. 15 240
Related articles from Frontiers Journals
[1] E. M. E. Zayed, S. A. Hoda Ibrahim. Exact Solutions of Nonlinear Evolution Equations in Mathematical Physics Using the Modified Simple Equation Method[J]. Chin. Phys. Lett., 2012, 29(6): 1168-1171
[2] HE Jing-Song, WANG You-Ying, LI Lin-Jing. Non-Rational Rogue Waves Induced by Inhomogeneity[J]. Chin. Phys. Lett., 2012, 29(6): 1168-1171
[3] YANG Zheng-Ping, ZHONG Wei-Ping. Self-Trapping of Three-Dimensional Spatiotemporal Solitary Waves in Self-Focusing Kerr Media[J]. Chin. Phys. Lett., 2012, 29(6): 1168-1171
[4] CUI Kai. New Wronskian Form of the N-Soliton Solution to a (2+1)-Dimensional Breaking Soliton Equation[J]. Chin. Phys. Lett., 2012, 29(6): 1168-1171
[5] S. Hussain. The Effect of Spectral Index Parameter κ on Obliquely Propagating Solitary Wave Structures in Magneto-Rotating Plasmas[J]. Chin. Phys. Lett., 2012, 29(6): 1168-1171
[6] YAN Jia-Ren**,ZHOU Jie,AO Sheng-Mei. The Dynamics of a Bright–Bright Vector Soliton in Bose–Einstein Condensation[J]. Chin. Phys. Lett., 2012, 29(5): 1168-1171
[7] S. S. Dehcheshmeh*,S. Karimi Vanani,J. S. Hafshejani. Operational Tau Approximation for the Fokker–Planck Equation[J]. Chin. Phys. Lett., 2012, 29(4): 1168-1171
[8] CAI Jia-Xiang, MIAO Jun. New Explicit Multisymplectic Scheme for the Complex Modified Korteweg-de Vries Equation[J]. Chin. Phys. Lett., 2012, 29(3): 1168-1171
[9] LI Zhi-Ming, JIANG Hai-Ying, HAN Yan-Bin, LI Jin-Ping, YIN Jian-Qin, ZHANG Jin-Cheng. Temperature Uniformity of Wafer on a Large-Sized Susceptor for a Nitride Vertical MOCVD Reactor[J]. Chin. Phys. Lett., 2012, 29(3): 1168-1171
[10] Saliou Youssoufa, Victor K. Kuetche, Timoleon C. Kofane. Generation of a New Coupled Ultra-Short Pulse System from a Group Theoretical Viewpoint: the Cartan Ehresman Connection[J]. Chin. Phys. Lett., 2012, 29(2): 1168-1171
[11] Hermann T. Tchokouansi, Victor K. Kuetche, Abbagari Souleymanou, Thomas B. Bouetou, Timoleon C. Kofane. Generating a New Higher-Dimensional Ultra-Short Pulse System: Lie-Algebra Valued Connection and Hidden Structural Symmetries[J]. Chin. Phys. Lett., 2012, 29(2): 1168-1171
[12] LI Shao-Wu, WANG Jian-Ping. Finite Spectral Semi-Lagrangian Method for Incompressible Flows[J]. Chin. Phys. Lett., 2012, 29(2): 1168-1171
[13] Seoung-Hwan Park**, Yong-Tae Moon, Jeong Sik Lee, Ho Ki Kwon, Joong Seo Park, Doyeol Ahn . Optical Gain Analysis of Graded InGaN/GaN Quantum-Well Lasers[J]. Chin. Phys. Lett., 2011, 28(7): 1168-1171
[14] CHEN Shou-Ting**, ZHU Xiao-Ming, LI Qi, CHEN Deng-Yuan . N-Soliton Solutions for the Four-Potential Isopectral Ablowitz–Ladik Equation[J]. Chin. Phys. Lett., 2011, 28(6): 1168-1171
[15] ZHAO Song-Lin**, ZHANG Da-Jun, CHEN Deng-Yuan . A Direct Linearization Method of the Non-Isospectral KdV Equation[J]. Chin. Phys. Lett., 2011, 28(6): 1168-1171
Viewed
Full text


Abstract