Chin. Phys. Lett.  2008, Vol. 25 Issue (4): 1172-1174    DOI:
Original Articles |
Solutions of Three-Dimensional Separable Non-Central Potential
Ozlem Yesiltas
Gazi University, Faculty of Arts and Sciences, Department of Physics, 06500 Ankara, Turkey
Cite this article:   
Ozlem Yesiltas 2008 Chin. Phys. Lett. 25 1172-1174
Download: PDF(93KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We show that a wide class of non-central potentials can be analysed via the improved picture of the Nikiforov--Uvarov method [Physica Scripta 75(2007)686]. It has been shown that using the alternative approach, polynomial
solutions of three-dimensional separable non-central potential can be obtained.
Keywords: 03.65.Db      03.65.Ge     
Received: 16 November 2007      Published: 31 March 2008
PACS:  03.65.Db (Functional analytical methods)  
  03.65.Ge (Solutions of wave equations: bound states)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2008/V25/I4/01172
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Ozlem Yesiltas
[1] Bender C M, Wang Q 2001 J. Phys. A 34 9835
[2] Znojil M, Yanovich D, Gerdt V P 2003 J. Phys. A 36 6531
[3] Levai G, Sinha A and Roy P 2003 J. Phys. A 367611
[4] Gagnon L and Winternitz P 1989 J. Phys. A 22 469 Stump D R 1998 Eur. J. Phys. 19 299
[5] A Khare, R K Bhaduri 1994 Am. J. Phys. 62 1008
[6] Makowski A J 2003 Phys. Rev. A 68 022102
[7] Murat M, Kantor M Y 2006 Phys. Rev. E 74031124
[8] Guseinov I I 2004 J. Phys. A 37 957
[9] Gang C and Zi-Dong C 2004 Chin. Phys. 13445
[10] Bentag B, Chetouani L 2000 Czech. J. Phys. 50593
[11] Belov A A, Lozovik Y E 1990 Theor. Math. Phys 82 62
[12] Dutt R, Gangopadhyaya A, Sukhatme U P 1997 Am. J.Phys. 65 400
[13] Kaushal R S 1991 Annal. Phys. 206 90
[14] Makarov A A, Smorodinsky J A, Valiev K, Winternitz 1967 Nuovo Cimento A 52 1061
[15] Kerimov G A 2006 J. Phys. A 39 1183 Kerimov G A 2006 Phys. Lett. A 358 176.
[16] Kaushal R S 1992 Phys. Rev. A 46 2941
[17] G\"{on\"{ul B, Ko\c{cak M 2005 Mod. Phys. Lett.A 20 355
[18] Akta\c{s M, Sever R 2005 J. Math. Chem. 37139
[19] Alhaidari A D, Bahlouli H, Al-Hasan A Phys. Lett. A2006 349 87 Alhaidari A D 2005 Foundations of Phys. Lett. 18651 Alhaidari A D 2005 J. Phys. A 38 3409
[20] Basco F, Bernido C C, Carpio-Bernido M V 1991 Phys.Lett. A 157 461
[21] S\"{okmen I 1986 Phys. Lett. A 118 249
[22] Mandal B P 2000 Int. J. Mod. Phys. A 15 1225
[23] Dong S, Chen C and Cassou M L 2005 Int. J. QuantumChem. 105 453
[24] G\"{on\"{ul B Zorba I 2000 Phys. Lett. A 269 83
[25] Ikhdair S M and Sever R 2007 Int. J. Theor. Phys 46 2384
[26] Nikiforov A F and Uvarov V B 1988 Special Functionsof Mathematical Physics (Basel: Birkhauser)
[27] G\"{on\"{ul B, K\"{oksal K 2007 PhysicaScripta 75 686
[28] Ye\c{silta\c{s \"{O 2007 Physica Scripta 75 41
[29] Levai G 1989 J. Phys. A 22 689
[30] de Lange O L and Raab R E 1991 Operator Methods inQuantum Mechanics (Oxford: Clarendon)
[31] Chen J L, Liu Y and Ge M L 1998 J. Phys. A 316473
[32] Quesne C 1999 J. Phys. A 32 6705
Related articles from Frontiers Journals
[1] Ramesh Kumar, Fakir Chand. Energy Spectra of the Coulomb Perturbed Potential in N-Dimensional Hilbert Space[J]. Chin. Phys. Lett., 2012, 29(6): 1172-1174
[2] Akpan N. Ikot. Solutions to the Klein–Gordon Equation with Equal Scalar and Vector Modified Hylleraas Plus Exponential Rosen Morse Potentials[J]. Chin. Phys. Lett., 2012, 29(6): 1172-1174
[3] NIU Yao-Bin, WANG Zhong-Wei, DONG Si-Wei. Modified Homotopy Perturbation Method for Certain Strongly Nonlinear Oscillators[J]. Chin. Phys. Lett., 2012, 29(6): 1172-1174
[4] A. I. Arbab. Transport Properties of the Universal Quantum Equation[J]. Chin. Phys. Lett., 2012, 29(3): 1172-1174
[5] WANG Jun-Min. Periodic Wave Solutions to a (3+1)-Dimensional Soliton Equation[J]. Chin. Phys. Lett., 2012, 29(2): 1172-1174
[6] Hassanabadi Hassan, Yazarloo Bentol Hoda, LU Liang-Liang. Approximate Analytical Solutions to the Generalized Pöschl–Teller Potential in D Dimensions[J]. Chin. Phys. Lett., 2012, 29(2): 1172-1174
[7] CHEN Qing-Hu, **, LI Lei, LIU Tao, WANG Ke-Lin. The Spectrum in Qubit-Oscillator Systems in the Ultrastrong Coupling Regime[J]. Chin. Phys. Lett., 2012, 29(1): 1172-1174
[8] WANG Jun-Min**, YANG Xiao . Theta-function Solutions to the (2+1)-Dimensional Breaking Soliton Equation[J]. Chin. Phys. Lett., 2011, 28(9): 1172-1174
[9] M. R. Setare, *, D. Jahani, ** . Quantum Hall Effect and Different Zero-Energy Modes of Graphene[J]. Chin. Phys. Lett., 2011, 28(9): 1172-1174
[10] ZHANG Min-Cang**, HUANG-FU Guo-Qing . Analytical Approximation to the -Wave Solutions of the Hulthén Potential in Tridiagonal Representation[J]. Chin. Phys. Lett., 2011, 28(5): 1172-1174
[11] O. Bayrak**, A. Soylu, I. Boztosun . Effect of the Velocity-Dependent Potentials on the Bound State Energy Eigenvalues[J]. Chin. Phys. Lett., 2011, 28(4): 1172-1174
[12] WANG Jun-Min . Traveling Wave Evolutions of a Cosh-Gaussian Laser Beam in Both Kerr and Cubic Quintic Nonlinear Media Based on Mathematica[J]. Chin. Phys. Lett., 2011, 28(3): 1172-1174
[13] Altu&#, , Arda, Ramazan Sever. Effective Mass Schrödinger Equation via Point Canonical Transformation[J]. Chin. Phys. Lett., 2010, 27(7): 1172-1174
[14] TIAN Gui-Hua, ZHONG Shu-Quan. Ground State Eigenfunction of Spheroidal Wave Functions[J]. Chin. Phys. Lett., 2010, 27(4): 1172-1174
[15] D. Agboola. Solutions to the Modified Pöschl-Teller Potential in D-Dimensions[J]. Chin. Phys. Lett., 2010, 27(4): 1172-1174
Viewed
Full text


Abstract