Chin. Phys. Lett.  2008, Vol. 25 Issue (3): 881-883    DOI:
Original Articles |
Geometric Property of the Faddeev Model
SHI Chang-Guang
Department of Mathematics and Physics, Shanghai University of Electric Power, Shanghai 200090
Cite this article:   
SHI Chang-Guang 2008 Chin. Phys. Lett. 25 881-883
Download: PDF(335KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Two functions u and v are used in expressing the solutions of the Faddeev model. The geometric property of the surface S determined by u and v is discussed and the shape of the surface is demonstrated as an example. The Gaussian curvature of the surface S is negative.
Keywords: 11.10.Lm      02.40.-k      03.50.-z     
Received: 18 September 2007      Published: 27 February 2008
PACS:  11.10.Lm (Nonlinear or nonlocal theories and models)  
  02.40.-k (Geometry, differential geometry, and topology)  
  03.50.-z (Classical field theories)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2008/V25/I3/0881
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
SHI Chang-Guang
[1] Battye R A and Sutcliffe P M 1998 Phys. Rev. Lett. 81 4798
[2]Hietarinta J and Salo P 1999 Phys. Lett. B 451 60
[3]Faddeev L and Niemi A J 1999 Phys. Rev. Lett. 82 1624
[4]Faddeev L 1976 Lett. Math. Phys. 1 289
[5] Faddeev L and Niemi A J 1997 Nature 387 58
[6] Hirayama M and Shi C G 2004 Phys. Rev. D 69 045001
Related articles from Frontiers Journals
[1] CHEN Xiang-Wei, MEI Feng-Xiang** . Jacobi Last Multiplier Method for Equations of Motion of Constrained Mechanical Systems[J]. Chin. Phys. Lett., 2011, 28(4): 881-883
[2] WANG Hua-Wen, CHENG Hong-Bo* . Virial Relation for Compact Q-Balls in the Complex Signum-Gordon Model[J]. Chin. Phys. Lett., 2011, 28(12): 881-883
[3] HUANG Wei-Li, CAI Jian-Le** . Conformal Invariance of Higher-Order Lagrange Systems by Lie Point Transformation[J]. Chin. Phys. Lett., 2011, 28(11): 881-883
[4] XIA Li-Li, CAI Jian-Le. Symmetry of Lagrangians of Nonholonomic Controllable Mechanical Systems[J]. Chin. Phys. Lett., 2010, 27(8): 881-883
[5] SHI Chang-Guang, HIRAYAMA Minoru,. Exact Bosonic Solutions of the Truncated Skyrme Model[J]. Chin. Phys. Lett., 2010, 27(6): 881-883
[6] ZHANG Zheng-Di, BI Qin-Sheng . Singular Wave Solutions of Two Integrable Generalized KdV Equations[J]. Chin. Phys. Lett., 2010, 27(10): 881-883
[7] JIA Xiao-Yu, WANG Na. Geometric Approach to Lie Symmetry of Discrete Time Toda Equation[J]. Chin. Phys. Lett., 2009, 26(8): 881-883
[8] CAO Li-Mei, SUN Hua-Fei, ZHANG Zhen-Ning. Geometric Description of Fibre Bundle Surface for Birkhoff System[J]. Chin. Phys. Lett., 2009, 26(3): 881-883
[9] WANG Bin, LIU Yu-Xin. Radial Excitations in the Global Colour Soliton Model[J]. Chin. Phys. Lett., 2007, 24(8): 881-883
[10] KE San-Min, SHI Kang-Jie, WANG Chun, WU Sheng. Flat Currents and Solutions of Sigma Model on Supercoset Targets with Z2m Grading[J]. Chin. Phys. Lett., 2007, 24(12): 881-883
[11] LU Ran, WANG Qing. Equivalence of Different Descriptions for η Particle in Simplest Little Higgs Model[J]. Chin. Phys. Lett., 2007, 24(12): 881-883
[12] HU Heng-Chun, ZHU Hai-Dong. New Doubly Periodic Waves of the (2+1)-Dimensional Double Sine-Gordon Equation[J]. Chin. Phys. Lett., 2007, 24(1): 881-883
[13] DUAN Wen-Shan, CHEN Jian-Hong, YANG Hong-Juan, SHI Yu-Ren, WANG Hong-Yan. Nonlinear Wave in a Disc-Shaped Bose--Einstein Condensate[J]. Chin. Phys. Lett., 2006, 23(8): 881-883
[14] QU Qing-Ling, WANG Yang, GAN Fu-Xi. Numerical Analysis and Comparison of Three Metal-Oxide-Type Super-Resolution Near Field Structures[J]. Chin. Phys. Lett., 2006, 23(12): 881-883
[15] DUAN Yi-Shi, WU Shao-Feng. Regular Magnetic Monopole from Generalized ’t Hooft Tensor[J]. Chin. Phys. Lett., 2006, 23(11): 881-883
Viewed
Full text


Abstract