Chin. Phys. Lett.  2008, Vol. 25 Issue (3): 878-880    DOI:
Original Articles |
Existence of Formal Conservation Laws of a Variable-Coefficient Korteweg--de Vries Equation from Fluid Dynamics and Plasma Physics via Symbolic Computation
ZHANG Chun-Yi1,2;LI Juan3;MENG Xiang-Hua3;XU Tao3,GAO Yi-Tian 1,4
1Key Laboratory of Fluid Mechanics (Ministry of Education) and National Laboratory for Computational Fluid Dynamics, Beijing University of Aeronautics and Astronautics, Beijing 1000832Meteorology Center of Air Force Command Post, Changchun 1300513School of Science, PO Box 122, Beijing University of Posts and Telecommunications, Beijing 1008764State Key Laboratory of Software Development Environment, Beijing University of Aeronautics and Astronautics, Beijing 100876
Cite this article:   
ZHANG Chun-Yi, LI Juan, MENG Xiang-Hua et al  2008 Chin. Phys. Lett. 25 878-880
Download: PDF(100KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Employing the method which can be used to demonstrate the infinite conservation laws for the standard Korteweg--de Vries (KdV) equation, we prove that the variable-coefficient KdV equation under the Painleve test
condition also possesses the formal conservation laws.
Keywords: 05.45.Yv      47.35.Fg      02.30.Ik      02.70.Wz     
Received: 23 October 2007      Published: 27 February 2008
PACS:  05.45.Yv (Solitons)  
  47.35.Fg (Solitary waves)  
  02.30.Ik (Integrable systems)  
  02.70.Wz (Symbolic computation (computer algebra))  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2008/V25/I3/0878
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHANG Chun-Yi
LI Juan
MENG Xiang-Hua
XU Tao
GAO Yi-Tian
[1] Capasso F, Sirtori C, Faist J, Sivco D L and Cho S N G1992 Nature 358 565
[2] Matveev V 1992 Phys. Lett. A 166 209
[3] Jaworski M and Zagrodzinski J 1995 Chaos, Solitonsand Fractals 5 2229
[4] Chen Y, Li B and Zhang H Q 2003 Int. J. Mod. Phys.C 14 99
[5] Chen Y, Li B and Zhang H Q 2003 Int. J. Mod.Phys. C 14 471
[6] Chen Y and Yu Z 2003 Int. J. Mod. Phys. C 14601
[7] Xie Y C 2004 Chaos, Solitons and Fractals 20337
[8] Gao Y T and Tian B 2001 Int. J. Mod. Phys. C 12 1431
[9] Yi S, Cooney J L, Kim H S, Amin A, El-Zein Y andLonngren K E 1996 Phys. Plasmas 3 529
[10]Das G and Sarma J 1998 Phys. Plasmas 5 3918
[11]Das G and Sarma J 1999 Phys. Plasmas 6 4394
[12]Hong H and Lee J 1999 Phys. Plasmas 6 3422
[13] Tian B and Gao Y T 2001 Eur. Phys. J. B 22351
[14] Joshi N 1987 Phys. Lett. A 125 456
[15] Hlavaty V 1988 Phys. Lett. A 128 335
[16] Zhang C Y, Gao Y T, Meng X H, Li J, Xu T, Wei G Mand Zhu H W 2006 J. Phys. A 39 14353
[17] Yan Z Y and Zhang H Q 2001 J. Phys. A 341785
[18] Barnett M P, Capitani J F, Von Zur Gathen J and GerhardJ 2004 Int. J. Quant. Chem. 100 80
[19]Xie F D and Gao X S 2004 Comm. Theor. Phys. 41 353
[20] Gao Y T, Tian B and Zhang C Y 2006 Acta Mech. 182 17
[21] Miura R M 1968 J. Math. Phys. 9 1202
[22] Miura R M, Gardner C S and Kruskal M D 1968 J. Math.Phys. 9 1204
[23] Huang G X, Szeftel J and Zhu S H 2002 Phys. Rev.A 65 053605
[24]Johnson R S 1973 Proc. Cambridge Philos. Soc. 73 183
[25] Frantzeskakis D J, Proukakis N P and Kevrekidis P G2004 Phys. Rev. A 70 015601
[26]Dai H H and Huo Y 2002 Wave Motion 35 55
[27] Tian B, Wei G M, Zhang C Y, Shan W R and Gao Y T 2006 Phys. Lett. A 356 8
[28]Ostrovsky L and Stepanyants Y A 1989 Rev. Geophys. 27 293
[29] Holloway P, Pelinovsky E and Talipova T 1999 J.Geophys. Res. C 104 18333
[30] Grimshaw R H J 1978 J. Fluid Mech. 86 415
[31] Grimshaw R H J and Mitsudela H 1993 Stud. Appl.Math. 90 75
[32] Ei G A and Grimshaw R H J 2002 Chaos 121015 2002
Related articles from Frontiers Journals
[1] E. M. E. Zayed, S. A. Hoda Ibrahim. Exact Solutions of Nonlinear Evolution Equations in Mathematical Physics Using the Modified Simple Equation Method[J]. Chin. Phys. Lett., 2012, 29(6): 878-880
[2] HE Jing-Song, WANG You-Ying, LI Lin-Jing. Non-Rational Rogue Waves Induced by Inhomogeneity[J]. Chin. Phys. Lett., 2012, 29(6): 878-880
[3] YANG Zheng-Ping, ZHONG Wei-Ping. Self-Trapping of Three-Dimensional Spatiotemporal Solitary Waves in Self-Focusing Kerr Media[J]. Chin. Phys. Lett., 2012, 29(6): 878-880
[4] CUI Kai. New Wronskian Form of the N-Soliton Solution to a (2+1)-Dimensional Breaking Soliton Equation[J]. Chin. Phys. Lett., 2012, 29(6): 878-880
[5] S. Hussain. The Effect of Spectral Index Parameter κ on Obliquely Propagating Solitary Wave Structures in Magneto-Rotating Plasmas[J]. Chin. Phys. Lett., 2012, 29(6): 878-880
[6] CAO Ce-Wen**,ZHANG Guang-Yao. Lax Pairs for Discrete Integrable Equations via Darboux Transformations[J]. Chin. Phys. Lett., 2012, 29(5): 878-880
[7] YAN Jia-Ren**,ZHOU Jie,AO Sheng-Mei. The Dynamics of a Bright–Bright Vector Soliton in Bose–Einstein Condensation[J]. Chin. Phys. Lett., 2012, 29(5): 878-880
[8] Mohammad Najafi**,Maliheh Najafi,M. T. Darvishi. New Exact Solutions to the (2+1)-Dimensional Ablowitz–Kaup–Newell–Segur Equation: Modification of the Extended Homoclinic Test Approach[J]. Chin. Phys. Lett., 2012, 29(4): 878-880
[9] WANG Jun-Min. Periodic Wave Solutions to a (3+1)-Dimensional Soliton Equation[J]. Chin. Phys. Lett., 2012, 29(2): 878-880
[10] Saliou Youssoufa, Victor K. Kuetche, Timoleon C. Kofane. Generation of a New Coupled Ultra-Short Pulse System from a Group Theoretical Viewpoint: the Cartan Ehresman Connection[J]. Chin. Phys. Lett., 2012, 29(2): 878-880
[11] Hermann T. Tchokouansi, Victor K. Kuetche, Abbagari Souleymanou, Thomas B. Bouetou, Timoleon C. Kofane. Generating a New Higher-Dimensional Ultra-Short Pulse System: Lie-Algebra Valued Connection and Hidden Structural Symmetries[J]. Chin. Phys. Lett., 2012, 29(2): 878-880
[12] LIU Ping**, FU Pei-Kai. Note on the Lax Pair of a Coupled Hybrid System[J]. Chin. Phys. Lett., 2012, 29(1): 878-880
[13] LOU Yan, ZHU Jun-Yi** . Coupled Nonlinear Schrödinger Equations and the Miura Transformation[J]. Chin. Phys. Lett., 2011, 28(9): 878-880
[14] WANG Jun-Min**, YANG Xiao . Theta-function Solutions to the (2+1)-Dimensional Breaking Soliton Equation[J]. Chin. Phys. Lett., 2011, 28(9): 878-880
[15] CHEN Shou-Ting**, ZHU Xiao-Ming, LI Qi, CHEN Deng-Yuan . N-Soliton Solutions for the Four-Potential Isopectral Ablowitz–Ladik Equation[J]. Chin. Phys. Lett., 2011, 28(6): 878-880
Viewed
Full text


Abstract