Original Articles |
|
|
|
|
Existence of Formal Conservation Laws of a Variable-Coefficient Korteweg--de Vries Equation from Fluid Dynamics and Plasma Physics via Symbolic Computation |
ZHANG Chun-Yi1,2;LI Juan3;MENG Xiang-Hua3;XU Tao3,GAO Yi-Tian 1,4 |
1Key Laboratory of Fluid Mechanics (Ministry of Education) and National Laboratory for Computational Fluid Dynamics, Beijing University of Aeronautics and Astronautics, Beijing 1000832Meteorology Center of Air Force Command Post, Changchun 1300513School of Science, PO Box 122, Beijing University of Posts and Telecommunications, Beijing 1008764State Key Laboratory of Software Development Environment, Beijing University of Aeronautics and Astronautics, Beijing 100876 |
|
Cite this article: |
ZHANG Chun-Yi, LI Juan, MENG Xiang-Hua et al 2008 Chin. Phys. Lett. 25 878-880 |
|
|
Abstract Employing the method which can be used to demonstrate the infinite conservation laws for the standard Korteweg--de Vries (KdV) equation, we prove that the variable-coefficient KdV equation under the Painleve test condition also possesses the formal conservation laws.
|
Keywords:
05.45.Yv
47.35.Fg
02.30.Ik
02.70.Wz
|
|
Received: 23 October 2007
Published: 27 February 2008
|
|
|
|
|
|
[1] Capasso F, Sirtori C, Faist J, Sivco D L and Cho S N G1992 Nature 358 565 [2] Matveev V 1992 Phys. Lett. A 166 209 [3] Jaworski M and Zagrodzinski J 1995 Chaos, Solitonsand Fractals 5 2229 [4] Chen Y, Li B and Zhang H Q 2003 Int. J. Mod. Phys.C 14 99 [5] Chen Y, Li B and Zhang H Q 2003 Int. J. Mod.Phys. C 14 471 [6] Chen Y and Yu Z 2003 Int. J. Mod. Phys. C 14601 [7] Xie Y C 2004 Chaos, Solitons and Fractals 20337 [8] Gao Y T and Tian B 2001 Int. J. Mod. Phys. C 12 1431 [9] Yi S, Cooney J L, Kim H S, Amin A, El-Zein Y andLonngren K E 1996 Phys. Plasmas 3 529 [10]Das G and Sarma J 1998 Phys. Plasmas 5 3918 [11]Das G and Sarma J 1999 Phys. Plasmas 6 4394 [12]Hong H and Lee J 1999 Phys. Plasmas 6 3422 [13] Tian B and Gao Y T 2001 Eur. Phys. J. B 22351 [14] Joshi N 1987 Phys. Lett. A 125 456 [15] Hlavaty V 1988 Phys. Lett. A 128 335 [16] Zhang C Y, Gao Y T, Meng X H, Li J, Xu T, Wei G Mand Zhu H W 2006 J. Phys. A 39 14353 [17] Yan Z Y and Zhang H Q 2001 J. Phys. A 341785 [18] Barnett M P, Capitani J F, Von Zur Gathen J and GerhardJ 2004 Int. J. Quant. Chem. 100 80 [19]Xie F D and Gao X S 2004 Comm. Theor. Phys. 41 353 [20] Gao Y T, Tian B and Zhang C Y 2006 Acta Mech. 182 17 [21] Miura R M 1968 J. Math. Phys. 9 1202 [22] Miura R M, Gardner C S and Kruskal M D 1968 J. Math.Phys. 9 1204 [23] Huang G X, Szeftel J and Zhu S H 2002 Phys. Rev.A 65 053605 [24]Johnson R S 1973 Proc. Cambridge Philos. Soc. 73 183 [25] Frantzeskakis D J, Proukakis N P and Kevrekidis P G2004 Phys. Rev. A 70 015601 [26]Dai H H and Huo Y 2002 Wave Motion 35 55 [27] Tian B, Wei G M, Zhang C Y, Shan W R and Gao Y T 2006 Phys. Lett. A 356 8 [28]Ostrovsky L and Stepanyants Y A 1989 Rev. Geophys. 27 293 [29] Holloway P, Pelinovsky E and Talipova T 1999 J.Geophys. Res. C 104 18333 [30] Grimshaw R H J 1978 J. Fluid Mech. 86 415 [31] Grimshaw R H J and Mitsudela H 1993 Stud. Appl.Math. 90 75 [32] Ei G A and Grimshaw R H J 2002 Chaos 121015 2002 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|