Chin. Phys. Lett.  2008, Vol. 25 Issue (3): 866-869    DOI:
Original Articles |
Structure-Preserving Algorithms for the Lorenz System
GANG Tie-Qiang1;MEI Feng-Xiang1;CHEN Li-Jie2
1Department of Mechanics, Beijing Institute of Technology, Beijing 1000812Department of Mechanical and Electrical Engineering, Xiamen University,Xiamen 361005
Cite this article:   
GANG Tie-Qiang, MEI Feng-Xiang, CHEN Li-Jie 2008 Chin. Phys. Lett. 25 866-869
Download: PDF(724KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Based on a splitting method and a composition method, we construct some structure-preserving algorithms with first-order, second-order and fourth-order accuracy for a Lorenz system. By using the Liouville's formula, it is proven that the structure-preserving algorithms exactly preserve the volume of infinitesimal cube for the Lorenz system. Numerical experimental results illustrate that for the conservative Lorenz system, the qualitative behaviour of the trajectories described by the classical explicit fourth-order Runge--Kutta (RK4) method and the fifth-order Runge--Kutta--Fehlberg (RKF45) method is wrong, while the qualitative behaviour derived from the structure-preserving algorithms with different orders of accuracy is correct. Moreover, for the small
dissipative Lorenz system, the norm errors of the structure-preserving algorithms in phase space are less than those of the Runge--Kutta methods.
Keywords: 05.45.Pq      02.60.Lj     
Received: 21 November 2007      Published: 27 February 2008
PACS:  05.45.Pq (Numerical simulations of chaotic systems)  
  02.60.Lj (Ordinary and partial differential equations; boundary value problems)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2008/V25/I3/0866
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
GANG Tie-Qiang
MEI Feng-Xiang
CHEN Li-Jie
[1] Lorenz E N 1963 J. Atmospheric Sci. 20 130
[2]Feng K 1984 Proceedings of International Symposium onDifferential Geometry and Differential Equations (Beijing: Science Press)
[3]Hairer E, Lubich C and Wanner G 2002 Geometric NumericalIntegration (Berlin: Springer)
[4]Trotter H F 1959 Proc. Am. Math. Soc. 10545
[5]Suzuki M 1990 Phys. Lett. A 146 319
[6]Yoshida H 1990 Phys. Lett. A 150 262
[7]Qin M Z and Zhu W J 1992 Computing. 47 309
[8]McLachlan R I 1995 SIAM J. Sci. Comput. 16 151
[9]Mendes R V and Taborda D 1981 J. Math. Phys. 22 1420
[10]Robbins K 1979 SIAM J. Appl. Math. 36 457
[11]Sparrow C 1982 The Lorenz Equations: Bifurcations,Chaos, and Strange Attractors (New York: Springer)
[12]Jackson E A 1990 Perspectives of Nonlinear Dynamics(Cambridge: Cambridge University Press)
[13]Robinson C R 2007 An Introduction to Dynamical Systems:Continuous and Discrete (Beijing: China Machine Press) (in Chinese)
Related articles from Frontiers Journals
[1] Paulo C. Rech. Dynamics in the Parameter Space of a Neuron Model[J]. Chin. Phys. Lett., 2012, 29(6): 866-869
[2] S. S. Dehcheshmeh*,S. Karimi Vanani,J. S. Hafshejani. Operational Tau Approximation for the Fokker–Planck Equation[J]. Chin. Phys. Lett., 2012, 29(4): 866-869
[3] ZHENG Yong-Ai. Adaptive Generalized Projective Synchronization of Takagi-Sugeno Fuzzy Drive-response Dynamical Networks with Time Delay[J]. Chin. Phys. Lett., 2012, 29(2): 866-869
[4] LI Xian-Feng**, Andrew Y. -T. Leung, CHU Yan-Dong. Symmetry and Period-Adding Windows in a Modified Optical Injection Semiconductor Laser Model[J]. Chin. Phys. Lett., 2012, 29(1): 866-869
[5] JI Ying**, BI Qin-Sheng . SubHopf/Fold-Cycle Bursting in the Hindmarsh–Rose Neuronal Model with Periodic Stimulation[J]. Chin. Phys. Lett., 2011, 28(9): 866-869
[6] WANG Xing-Yuan**, QIN Xue, XIE Yi-Xin . Pseudo-Random Sequences Generated by a Class of One-Dimensional Smooth Map[J]. Chin. Phys. Lett., 2011, 28(8): 866-869
[7] Department of Physics, Eastern Mediterranean University, G. Magosa, N. Cyprus, Mersin 0, Turkey
. Chaos in Kundt Type-III Spacetimes[J]. Chin. Phys. Lett., 2011, 28(7): 866-869
[8] WANG Xing-Yuan**, REN Xiao-Li . Chaotic Synchronization of Two Electrical Coupled Neurons with Unknown Parameters Based on Adaptive Control[J]. Chin. Phys. Lett., 2011, 28(5): 866-869
[9] SHI Si-Hong, YUAN Yong, WANG Hui-Qi, LUO Mao-Kang** . Weak Signal Frequency Detection Method Based on Generalized Duffing Oscillator[J]. Chin. Phys. Lett., 2011, 28(4): 866-869
[10] SI Xin-Hui**, ZHENG Lian-Cun, ZHANG Xin-Xin, SI Xin-Yi, YANG Jian-Hong . Flow of a Viscoelastic Fluid through a Porous Channel with Expanding or Contracting Walls[J]. Chin. Phys. Lett., 2011, 28(4): 866-869
[11] LI Qun-Hong**, CHEN Yu-Ming, QIN Zhi-Ying . Existence of Stick-Slip Periodic Solutions in a Dry Friction Oscillator[J]. Chin. Phys. Lett., 2011, 28(3): 866-869
[12] YANG Yang, WANG Cang-Long, DUAN Wen-Shan**, CHEN Jian-Min . Resonance and Rectification in a Two-Dimensional Frenkel–Kontorova Model with Triangular Symmetry[J]. Chin. Phys. Lett., 2011, 28(3): 866-869
[13] Junaid Ali Khan*, Muhammad Asif Zahoor Raja**, Ijaz Mansoor Qureshi . Stochastic Computational Approach for Complex Nonlinear Ordinary Differential Equations[J]. Chin. Phys. Lett., 2011, 28(2): 866-869
[14] FENG Cun-Fang**, WANG Ying-Hai . Projective Synchronization in Modulated Time-Delayed Chaotic Systems Using an Active Control Approach[J]. Chin. Phys. Lett., 2011, 28(12): 866-869
[15] JIANG Guo-Hui, ZHANG Yan-Hui**, BIAN Hong-Tao, XU Xue-You . Fractal Analysis of Transport Properties in a Sinai Billiard[J]. Chin. Phys. Lett., 2011, 28(12): 866-869
Viewed
Full text


Abstract