Chin. Phys. Lett.  2008, Vol. 25 Issue (3): 813-816    DOI:
Original Articles |
Physical Realization of Quantum C-Not Gate
HUO Jian-Li;WANG Shun-Jin;TAO Jun
Center of Theoretical Physics, School of Physics and Technology, Sichuan University, Chengdu 610064
Cite this article:   
HUO Jian-Li, WANG Shun-Jin, TAO Jun 2008 Chin. Phys. Lett. 25 813-816
Download: PDF(146KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We investigate a Heisenberg spin cluster with two particles controlled by a time-dependent magnetic field. The system is controlled by tuning the amplitude, frequency, and interaction time of the three-step time-dependent magnetic field. Then we solve the time-dependent Schrodinger equation of the two-particle system, and obtain the time evolution operator. By the
three-timestep interaction, the wavefunction evolves from the initial state to the final state, and the total evolution operator can be expressed as a product of the three evolution operators. By adjusting the physical parameters, the key two-qubit logic gate, the C-Not gate, can be realized physically.
Keywords: 03.65.Ge      03.67.-a     
Received: 17 October 2007      Published: 27 February 2008
PACS:  03.65.Ge (Solutions of wave equations: bound states)  
  03.67.-a (Quantum information)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2008/V25/I3/0813
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
HUO Jian-Li
WANG Shun-Jin
TAO Jun
[1] Nielsen M A and Chuang I L 2000 Quantum Computationand Quantum Information (Cambridge: Cambridge University Press)
[2] Wang S J 2005 Frontier Topics in Physics(Chengdu: Sichuan University) chap 7 (in Chinese)
[3] Zhang Z J, Zhang Z L and Li A M 2002 QuantumComputation and Encrypted Communications (Wuhan: Central ChinaNormal University Press) (in Chinese)
[4] Monroe et al 1995 Phys. Rev. Lett. 75 4717
[5] Gershenfeld N A and Chuang I L 1997 Science 275 350
[6] Loss D and Divincenzo D P 1998 Phys. Rev. A 57 120
[7] Turchette Q A et al 1995 Phys. Lett. 75 4710
[8] Yamamoto T, Pashkin Yu A, Astafiev O, Nakamura Y and Tsai J S2003 Nature 425 941
[9] Steffen M et al 2006 Science 313 1423
[10] Plantenberg J H, de Groot P C, Harmans C J P M and Mooij J E2007 Nature 447 836
[11] Ahmad Abliz, Gao H J, Xie X C, Wu Y S and Liu W M 2006 Phys. Rev. A 74 052105
[12] Su X F and Wang S J 2005 Int. J. phys. B 19 2481
[13] Tao J and Wang S J 2006 Chin. Phys. Lett. 23 3131
[14] Wang S J 1999 Prog. Phys. 19 331
[15] Wang S J 2005 Advanced Quantum Theory and QuantumMany-Body Theory (Chengdu: Sichuan University Press) chap 10 (inChinese)
Related articles from Frontiers Journals
[1] 天琦 窦,吉鹏 王,振华 李,文秀 屈,舜禹 杨,钟齐 孙,芬 周,雁鑫 韩,雨晴 黄,海强 马. A Fully Symmetrical Quantum Key Distribution System Capable of Preparing and Measuring Quantum States*

Supported by the Fundamental Research Funds for the Central Universities (Grant No. 2019XD-A02), and the State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications (Grant No. IPO2019ZT06).

[J]. Chin. Phys. Lett., 2020, 37(11): 813-816
[2] Ramesh Kumar, Fakir Chand. Energy Spectra of the Coulomb Perturbed Potential in N-Dimensional Hilbert Space[J]. Chin. Phys. Lett., 2012, 29(6): 813-816
[3] LIU Kui, CUI Shu-Zhen, YANG Rong-Guo, ZHANG Jun-Xiang, GAO Jiang-Rui. Experimental Generation of Multimode Squeezing in an Optical Parametric Amplifier[J]. Chin. Phys. Lett., 2012, 29(6): 813-816
[4] Akpan N. Ikot. Solutions to the Klein–Gordon Equation with Equal Scalar and Vector Modified Hylleraas Plus Exponential Rosen Morse Potentials[J]. Chin. Phys. Lett., 2012, 29(6): 813-816
[5] NIU Yao-Bin, WANG Zhong-Wei, DONG Si-Wei. Modified Homotopy Perturbation Method for Certain Strongly Nonlinear Oscillators[J]. Chin. Phys. Lett., 2012, 29(6): 813-816
[6] XIANG Shao-Hua**,DENG Xiao-Peng,SONG Ke-Hui. Protection of Two-Qubit Entanglement by the Quantum Erasing Effect[J]. Chin. Phys. Lett., 2012, 29(5): 813-816
[7] QIAN Yi,XU Jing-Bo**. Enhancing Quantum Discord in Cavity QED by Applying Classical Driving Field[J]. Chin. Phys. Lett., 2012, 29(4): 813-816
[8] Arpita Maitra, Santanu Sarkar. On Universality of Quantum Fourier Transform[J]. Chin. Phys. Lett., 2012, 29(3): 813-816
[9] A. I. Arbab. Transport Properties of the Universal Quantum Equation[J]. Chin. Phys. Lett., 2012, 29(3): 813-816
[10] QIN Meng, ZHAI Xiao-Yue, CHEN Xuan, LI Yan-Biao, WANG Xiao, BAI Zhong. Effect of Spin-Orbit Interaction and Input State on Quantum Discord and Teleportation of Two-Qubit Heisenberg Systems[J]. Chin. Phys. Lett., 2012, 29(3): 813-816
[11] WANG Jun-Min. Periodic Wave Solutions to a (3+1)-Dimensional Soliton Equation[J]. Chin. Phys. Lett., 2012, 29(2): 813-816
[12] Hassanabadi Hassan, Yazarloo Bentol Hoda, LU Liang-Liang. Approximate Analytical Solutions to the Generalized Pöschl–Teller Potential in D Dimensions[J]. Chin. Phys. Lett., 2012, 29(2): 813-816
[13] GU Shi-Jian**, WANG Li-Gang, WANG Zhi-Guo, LIN Hai-Qing. Repeater-Assisted Zeno Effect in Classical Stochastic Processes[J]. Chin. Phys. Lett., 2012, 29(1): 813-816
[14] CHEN Qing-Hu, **, LI Lei, LIU Tao, WANG Ke-Lin. The Spectrum in Qubit-Oscillator Systems in the Ultrastrong Coupling Regime[J]. Chin. Phys. Lett., 2012, 29(1): 813-816
[15] WANG Jun-Min**, YANG Xiao . Theta-function Solutions to the (2+1)-Dimensional Breaking Soliton Equation[J]. Chin. Phys. Lett., 2011, 28(9): 813-816
Viewed
Full text


Abstract