Chin. Phys. Lett.  2008, Vol. 25 Issue (3): 817-820    DOI:
Original Articles |
Entanglement in One-Dimensional Random XY Spin Chain with Dzyaloshinskii--Moriya Interaction
SHAN Chuan-Jia;CHENG Wei-Wen;LIU Tang-Kun;HUANG Yan-Xia;LI Hong
Department of Physics, Hubei Normal University, Huangshi 435002
Cite this article:   
SHAN Chuan-Jia, CHENG Wei-Wen, LIU Tang-Kun et al  2008 Chin. Phys. Lett. 25 817-820
Download: PDF(162KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The impurities of exchange couplings, external magnetic fields and Dzyaloshinskii--Moriya (DM) interaction considered as Gaussian distribution, and the entanglement in one-dimensional random XY spin systems is investigated by the method of solving the different spin--spin correlation functions and the average magnetization per spin. The entanglement dynamics at central locations of ferromagnetic and antiferromagnetic chains have been studied by varying the three impurities and the strength of DM
interaction. (i) For the ferromagnetic spin chain, the weak DM interaction can improve the amount of entanglement to a large value, and the impurities have the opposite effect on the entanglement below and above critical DM interaction. (ii) For the antiferromagnetic spin chain, DM interaction can enhance the entanglement to a steady value. Our results imply that DM interaction strength, the impurity and exchange couplings (or magnetic field) play competing roles in enhancing quantum entanglement.
Keywords: 03.65.Ud      03.67.Mn      75.10.Pq     
Received: 01 November 2007      Published: 27 February 2008
PACS:  03.65.Ud (Entanglement and quantum nonlocality)  
  03.67.Mn (Entanglement measures, witnesses, and other characterizations)  
  75.10.Pq (Spin chain models)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2008/V25/I3/0817
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
SHAN Chuan-Jia
CHENG Wei-Wen
LIU Tang-Kun
HUANG Yan-Xia
LI Hong
[1]Bennett C H et al 1993 Phys. Rev. Lett. 70 1895 Shan C J et al 2007 Int. J. Quantum Information 5 359
[2] Cheng W W et al 2007 Chin. Phys. 16 38
[3] Shan C J et al 2007 Int. J. Quantum Information 5 335
[4] Grover L 1998 Phys. Rev. Lett. 80 4329
[5] Gu S J, Tian G S and Lin H Q 2007 Chin. Phys. Lett. 24 2737
[6] Shan C J et al 2006 Acta. Phys. Sin. 55 1585(in Chinese)
[7] Liu T K 2007 Chin. Phys. 16 3396
[8] Lu D M and Zheng S B 2007 Chin. Phys. Lett. 24596.
[9] Pang C Y and Li Y L 2006 Chin. Phys. Lett. 233145
[10] Zhai X Y and Tong P Q 2007 Chin. Phys. Lett. 24 2475
[11] Wu Y and Machta J 2005 Phys. Rev. Lett. 95137208
[12] Wang X G 2001 Phys. Rev. A 64 012313
[13] Zhang G F and Li S S 2005 Phys. Rev. A 72034302
[14] Zhao J Z et al 2003 Phys. Rev. Lett. 902072041
[15] Chutia S et al 2006 Phys. Rev. B 73 241304
[16] Fu H C et al 2002 J. Phys. A 35 4293 Li S B and Xu J B 2005 Phys. Lett. A 334 109
[17] Cheng W W et al 2007 Physica E 39 150
[18] Xin R, Song Z and Sun C P 2005 Phys. Lett. A 342 30
[19] Huang Z et al 2004 Phys. Lett. A 322 137
[20] Osenda O et al 2003 Phys. Rev. A 67 062321
[21] Shan C J et al 2008 Chin. Phys. 17 (in press)
[22] Osterloh A et al 2002 Nature 416 608
[23] Zhang G F 2007 Phys. Rev. A 75 034304
[24] Gurkan Z N and Pashaev O K 2007 arxiv: 0705.0679v1
[25] Dzyaloshinsky I et al 1958 J. Phys. Chem. Solids 4 241 Moriya T 1960 Phys. Rev. Lett. 4 228
[26] Lieb E, Schultz T and Mattis D 1961 Ann. Phys. 60 407
[27] Wick G C 1950 Phys. Rev. 80 268
[28] Wooters W K 1998 Phys. Rev. Lett. 80 2245
[29] Osborne T J et al 2002 Phys. Rev. A 66032110
Related articles from Frontiers Journals
[1] REN Jie, WU Yin-Zhong, ZHU Shi-Qun. Quantum Discord and Entanglement in Heisenberg XXZ Spin Chain after Quenches[J]. Chin. Phys. Lett., 2012, 29(6): 817-820
[2] SHAN Chuan-Jia,**,CAO Shuai,XUE Zheng-Yuan,ZHU Shi-Liang. Anomalous Temperature Effects of the Entanglement of Two Coupled Qubits in Independent Environments[J]. Chin. Phys. Lett., 2012, 29(4): 817-820
[3] LI Hong-Rong**,ZHANG Pei,GAO Hong,BI Wen-Ting,ALAMRI M. D.,LI Fu-Li. Non-Equilibrium Quantum Entanglement in Biological Systems[J]. Chin. Phys. Lett., 2012, 29(4): 817-820
[4] QIN Meng, ZHAI Xiao-Yue, CHEN Xuan, LI Yan-Biao, WANG Xiao, BAI Zhong. Effect of Spin-Orbit Interaction and Input State on Quantum Discord and Teleportation of Two-Qubit Heisenberg Systems[J]. Chin. Phys. Lett., 2012, 29(3): 817-820
[5] GE Rong-Chun, LI Chuan-Feng, GUO Guang-Can. Spin Dynamics in the XY Model[J]. Chin. Phys. Lett., 2012, 29(3): 817-820
[6] M. Ramzan. Decoherence and Multipartite Entanglement of Non-Inertial Observers[J]. Chin. Phys. Lett., 2012, 29(2): 817-820
[7] Piotr Zawadzki**. New View of Ping-Pong Protocol Security[J]. Chin. Phys. Lett., 2012, 29(1): 817-820
[8] S. P. Toh**, Hishamuddin Zainuddin, Kim Eng Foo,. Randomly Generating Four Mixed Bell-Diagonal States with a Concurrences Sum to Unity[J]. Chin. Phys. Lett., 2012, 29(1): 817-820
[9] LI Jun-Gang, **, ZOU Jian, **, XU Bao-Ming, SHAO Bin, . Quantum Correlation Generation in a Damped Cavity[J]. Chin. Phys. Lett., 2011, 28(9): 817-820
[10] ZHU Ren-Gui** . Frustrated Ferromagnetic Spin Chain near the Transition Point[J]. Chin. Phys. Lett., 2011, 28(9): 817-820
[11] SUN Ke-Wei**, CHEN Qing-Hu . Ground-State Behavior of the Quantum Compass Model in an External Field[J]. Chin. Phys. Lett., 2011, 28(9): 817-820
[12] LIU Zhi-Qiang, LIANG Xian-Ting** . Non-Markovian and Non-Perturbative Entanglement Dynamics of Biomolecular Excitons[J]. Chin. Phys. Lett., 2011, 28(8): 817-820
[13] ZHANG Ai-Ping**, QIANG Wen-Chao, LING Ya-Wen, XIN Hong, YANG Yong-Ming . Geometric Phase for a Qutrit-Qubit Mixed-Spin System[J]. Chin. Phys. Lett., 2011, 28(8): 817-820
[14] ZHENG An-Shou, **, LIU Ji-Bing, CHEN Hong-Yun . N−Qubit W State of Spatially Separated Atoms via Fractional Adiabatic Passage[J]. Chin. Phys. Lett., 2011, 28(8): 817-820
[15] Abbass Sabour, Mojtaba Jafarpour** . A Probability Measure for Entanglement of Pure Two-Qubit Systems and a Useful Interpretation for Concurrence[J]. Chin. Phys. Lett., 2011, 28(7): 817-820
Viewed
Full text


Abstract