Original Articles |
|
|
|
|
Growth of Highly Conductive n-Type Al0.7Ga0.3N Film by Using AlN Buffer with Periodical Variation of V / III Ratio |
ZHANG Jie, GUO Li-Wei, XING Zhi-Gang, GE Bing-Hui, DING Guo-Jian, PENG Ming-Zeng, JIA Hai-Qiang, ZHOU Jun-Ming, CHEN Hong |
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 |
|
Cite this article: |
ZHANG Jie, GUO Li-Wei, XING Zhi-Gang et al 2008 Chin. Phys. Lett. 25 4449-4452 |
|
|
Abstract High quality and highly conductive n-type Al0.7Ga0.3N films are obtained by using AlN multi-step layers (MSL) with periodical variation of V/III ratios by low-pressure metalorganic chemical vapour deposition (LP-MOCVD). The full-width at half-maximum (FWHM) of (0002) and (10-15) rocking curves of the Si-doped Al0.7Ga0.3N layer are 519 and 625 arcsec, respectively. Room temperature (RT) Hall measurement shows a free electron concentration of 2.9×1019cm-3, and mobility of 17.8cm2V-1s-1, corresponding to a resistivity of 0.0121Ωcm. High conductivity of the Si-doped AlGaN film with such high Al mole fraction is mainly contributed by a remarkable reduction of threading dislocations (TDs) in AlGaN layer. The TD reducing mechanism in AlN MSL growth with periodical variation of V / III ratio is discussed in detail.
|
Keywords:
81.05.Ea
81.15.Gh
61.05.Cp
|
|
Received: 03 June 2008
Published: 27 November 2008
|
|
PACS: |
81.05.Ea
|
(III-V semiconductors)
|
|
81.15.Gh
|
(Chemical vapor deposition (including plasma-enhanced CVD, MOCVD, ALD, etc.))
|
|
61.05.cp
|
(X-ray diffraction)
|
|
|
|
|
[1] Tut T, Yelboga T, Ulker E and Ozbay E 2008 Appl.Phys. Lett. 92 103502 [2] Jiang H and Egawa T 2007 Appl. Phys. Lett. 90121121 [3] Cherkashinin G et al 2006 Phys. Status Solidi B 243 1713 [4] Hideki H, Tohru Y, and Norimochi N 2007 Appl.Phys. Lett. 91 071901 [5] Fischer A J, Allerman A A, and Crawford M H 2004 Appl. Phys. Lett. 84 3394 [6] Hu X, Deng J, Zhang J P and Lunev A 2006 Phys. StatusSolidi A 203 1815 [7] Polyakov A Y et al 1998 Solid State Electron. 42 627 [8] Chris G et al 1999 MRS Internet J. Nitride Semicond.Res. 4S1 G10.4 [9] Podor B 1966 Phys. Status Solidi 16 K167 [10] Cantu P, Keller S, Mishra U K and DenBaars S P 2003 Appl. Phys. Lett. 82 3683 [11] Bradley S T et al 2003 J. Vac. Sci. Technol. B 21 2558 [12] Sun W H et al 2005 Appl. Phys. Lett. 87211915 [13] Yasan A et al 2003 Appl. Phys. Lett. 83 4701 [14] Jiang H, Egawa T, Hao M and Liu Y 2005 Appl. Phys.Lett. 87 241911 [15] Xi Y A et al 2007 J. Cryst Growth 299 59 [16] Kang H, Feng Z C and Ferguson I 2004 Mat. Res. Soc.Symp. Proc 798 5.71 [17] Cantu P, Keller S, Mishra U K and DenBaars S P 2003 Appl. Phys. Lett. 82 3683 [18] Zhang J P et al 2003 J. Electron. Mater. 32364 [19] Chen Z et al 2006 Appl. Phys. Lett. 89 081905 [20] Bai J et al 2006 Appl. Phys. Lett. 88 051903 [21] Okadaa N et al 2007 J .Crysalt Growth 298 349 [22] Heying B et al 1996 Appl. Phys. Lett. 68 643 [23] Peng M Z et al 2008 Chin. Phys. Lett. 25 2265 [24] Zhu K et al 2004 Appl. Phys. Lett. 85 4669 [25] Nakarmi M L et al 2004 Appl. Phys. Lett. 853769 [26] Yoshitaka T, Makoto K and Toshiki M 2007 J. CrystalGrowth 298 310 [27] Wang H M et al 2002 Appl. Phys. Lett. 81 604 [28] Zheng X H et al 2003 J. Crystal Growth 255 63 [29] Lee S R et al 2005 Appl. Phys. Lett. 86241904. |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|