Chin. Phys. Lett.  2008, Vol. 25 Issue (12): 4329-4332    DOI:
Original Articles |
Electrostatic Nonlinear Structures in Dissipative Electron--Positron--Ion Quantum Plasmas
S. A. Khan1, Q. Haque2
1Department of Physics, COMSATS Institute of Information Technology, Islamabad, Pakistan and Department of Physics, Government College Bagh 12500, AJK, Pakistan2Theoretical Plasma Physics Division, PINSTECH, P. O. Nilore Islamabad, Pakistan
Cite this article:   
S. A. Khan, Q. Haque 2008 Chin. Phys. Lett. 25 4329-4332
Download: PDF(237KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Low frequency (in comparison to ion plasma frequency) ion-acoustic shocks and solitons in superdense electron--positron--ion quantum plasmas are studied. The quantum hydrodynamic model is used incorporating quantum Bohm forces and Fermi--Dirac statistical corrections to derive the deformed Korteweg de Vries--Burgers (dKdVB) equation in weakly nonlinear limit. The travelling wave solution of dKdVB equation is presented and results are discussed in different limits. It is found that shock height increases with increase of quantum pressure, positron concentration and dissipation. Further, it is seen that the width of soliton decreases with increase of quantum pressure.
Keywords: 52.35.Fp      52.35.Tc      52.27.Cm      52.27.-h     
Received: 10 June 2008      Published: 27 November 2008
PACS:  52.35.Fp (Electrostatic waves and oscillations (e.g., ion-acoustic waves))  
  52.35.Tc (Shock waves and discontinuities)  
  52.27.Cm (Multicomponent and negative-ion plasmas)  
  52.27.-h (Basic studies of specific kinds of plasmas)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2008/V25/I12/04329
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
S. A. Khan
Q. Haque
[1] Markowich A, Ringhofer C and Schmeiser C 1990 Semiconductor Equations (Vienna: Springer) chap 1--2
[2] Shpatakovskaya G V 2006 J. Exp. Theor. Phys. 102 466
[3] Ang L K et al 2003 Phys. Rev. Lett. 91208303 Ang L K 2004 IEEE Trans. Plasma Sci. 32 410 Ang L K et al 2006 Phys. Plasmas 13 056701 Ang L K and Zhang P 2007 Phys. Rev. Lett. 98164802
[4] Killian T C 2006 Nature 441 298
[5] Jung Y D 2001 Phys. Plasmas 8 3842 Opher M et al 2001 Phys. Plasmas 8 2454
[6] Kremp D et al 1999 Phys. Rev. E 60 4725
[7] Manfredi G 2005 Fields Inst. Commun. 46 263 Manfredi G and Haas F 2001 Phys. Rev. B 64075316
[8] Haas F et al 2003 Phys. Plasmas 10 3858
[9] Khan S A and Mushtaq A 2007 Phys. Plasmas 14083703
[10] Khan S A et al 2008 Phys. Lett. A 372 148
[11] Ali S et al 2007 Phys. Plasmas 14 082307
[12] Mushtaq A and Khan S A 2007 Phys. Plasmas 14 052307
[13] Khan S A and Masood W 2008 Phys. Plasmas 15062301
[14] Roy K et al 2008 Phys. Plasmas 15 032310
[15] Shukla P K 2000 Phys. Plasmas 7 1044
[16] Demiray H 2004 Appl. Math. Comput. A 154665
[17] Karpman V I 1975 Nonlinear Waves in DispersiveMedia (Oxford: Pergamon) p 101
Related articles from Frontiers Journals
[1] Hafeez Ur Rehman. Electrostatic Dust Acoustic Solitons in Pair-Ion-Electron Plasmas[J]. Chin. Phys. Lett., 2012, 29(6): 4329-4332
[2] GUO Jun, YU Bin. Competition between Buneman and Langmuir Instabilities[J]. Chin. Phys. Lett., 2012, 29(3): 4329-4332
[3] WANG Feng**, PENG Xiao-Shi, JIAO Chun-Ye, LIU Shen-Ye, JIANG Xiao-Hua, DING Yong-Kun . Shock-Timing Experiment Using a Two-Step Radiation Pulse with a Polystyrene Target[J]. Chin. Phys. Lett., 2011, 28(8): 4329-4332
[4] LI Bo, **, CHEN Yan-Jun, LI Xing . Standing Shocks in the Inner Slow Solar Wind[J]. Chin. Phys. Lett., 2011, 28(5): 4329-4332
[5] HE Yong**, HU Xi-Wei, JIANG Zhong-He . Similar Rayleigh–Taylor Instability of Shock Fronts Perturbed by Corrugated Interfaces[J]. Chin. Phys. Lett., 2011, 28(5): 4329-4332
[6] S. Hussain, * N. Akhtar, Saeed-ur-Rehman . Non Planar Electrostatic Solitary Wave Structures in Negative Ion Degenerate Plasma[J]. Chin. Phys. Lett., 2011, 28(4): 4329-4332
[7] ZOU Xiu**, LIU Hui-Ping, QIU Ming-Hui, SUN Xiao-Hang . Sheath Criterion for a Collisional Electronegative Plasma Sheath in an Applied Magnetic Field[J]. Chin. Phys. Lett., 2011, 28(12): 4329-4332
[8] GUO Jun. Particle Simulation of Electrostatic Waves Driven by an Electron Beam[J]. Chin. Phys. Lett., 2010, 27(2): 4329-4332
[9] SUN Xiao-Xia, WANG Chun-Hua, GAO Feng. Lattice Waves in Two-Dimensional Hexagonal Quantum Plasma Crystals[J]. Chin. Phys. Lett., 2010, 27(2): 4329-4332
[10] S. A. Khan, S. Mahmood, Arshad M. Mirza. Nonplanar Ion-Acoustic Solitons in Electron-Positron-Ion Quantum Plasmas[J]. Chin. Phys. Lett., 2009, 26(4): 4329-4332
[11] YU Xin, ZHAO Qiang. Nonlinear Shock and Kink Waves with Complete Coriolis Force in Earth's Atmosphere[J]. Chin. Phys. Lett., 2009, 26(3): 4329-4332
[12] HE Yong, HU Xi-Wei, JIANG Zhong-He. Compressibility Effects on the Rayleigh--Taylor Instability Growth Rates[J]. Chin. Phys. Lett., 2008, 25(3): 4329-4332
[13] HAN Jiu-Ning, DUAN Wen-Shan, TIAN Duo-Xiang, LIANG Gui-Zhen, LI Xiao-Li, YANG Xiao-Xia. Propagation and Interaction of Ion-Acoustic Solitary Waves in a Two-Dimensional Plasma Consisting of Isothermal Electrons and Hot Ions[J]. Chin. Phys. Lett., 2008, 25(11): 4329-4332
[14] JIANG Zhong-He, HE Yong, HU Xi-Wei, LV Jian-Hong, HU Ye-Min. Structures of Strong Shock Waves in Dense Plasmas[J]. Chin. Phys. Lett., 2007, 24(8): 4329-4332
[15] GAN Bao-Xia, CHEN Yin-Hua. Oscillations of Magnetized Dust Grains in Plasma Sheath with Negative Ions[J]. Chin. Phys. Lett., 2007, 24(7): 4329-4332
Viewed
Full text


Abstract