Chin. Phys. Lett.  2008, Vol. 25 Issue (12): 4325-4328    DOI:
Original Articles |
Breakup of Spiral Waves in Coupled Hindmarsh--Rose Neurons
MA Jun, JIA Ya, TANG Jun, YANG Li-Jian
1Department of Physics, Central China Normal University, Wuhan 4300792School of Sciences, Lanzhou University of Technology, Lanzhou 730050
Cite this article:   
MA Jun, JIA Ya, TANG Jun et al  2008 Chin. Phys. Lett. 25 4325-4328
Download: PDF(491KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Breakup of spiral wave in the Hindmarsh--Rose neurons with nearest-neighbour couplings is reported. Appropriate initial values and parameter regions are selected to develop a stable spiral wave and then the Gaussian coloured noise with different intensities and correlation times is imposed on all neurons to study the breakup of spiral wave, respectively. Based on the mean field theory, the statistical factor of synchronization is defined to analyse the evolution of spiral wave. It is found that the stable rotating spiral wave encounters breakup with increasing intensity of Gaussian coloured noise or decreasing correlation time to certain threshold.
Keywords: 47.54.-r      05.45.-a     
Received: 03 September 2008      Published: 27 November 2008
PACS:  47.54.-r (Pattern selection; pattern formation)  
  05.45.-a (Nonlinear dynamics and chaos)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2008/V25/I12/04325
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
MA Jun
JIA Ya
TANG Jun
YANG Li-Jian
[1] Hindmarsh J L and Rose R M 1984 Proc. R. Soc. LondonB 221 87
[2]Hodgkin A L and Hxuley A F 1952 J. Physol. 117500
[3] Gammaitoni L, H$\ddot{a$nggi P and Jung P et al 1998 Rev. Mod. Phys. 70 223
[4]Hu G, Ditzinger T and Ning C N et al 1993 Phys. Rev.Lett. 71 807
[5] Wang W, Perez G and Cerdeira H 1993 Phys. Rev. E 47 2893
[6]Wang W, Wang Y Q and Wang Z D 1998 Phys. Rev. E 52 R2527
[7] Haufler D,Morin F and Lacaille J C et al 2007 Neurocomp. 70 1605
[8]Wang Q Y, Lu Q S and Chen G R et al 2006 Phys. Lett.A 356 17
[9] He D H, Shi P L and Stone L 2003 Phys. Rev. E 67 027201
[10]Erichsen R, Mainieri M S and Brunnet L G 2006 Phys.Rev. E 74 061906
[11]Wei D Q and Luo X S 2007 Commun. Theor. Phys. 48 759
[12] B\"{ar M, Gottschalk N and Eiswirth M et al 1994 J.Chem. Phys. 100 1202
[13]Kapral R and Showalter K 1994 Chemical Waves andPatterns (Dordrecht: Kluwer)
[14]Zaikin A N and Zhabotinsky A M 1970 Nature 225535
[15] Winfree A T 1972 Science 175 634
[16] Davidenko J, Pertsov A and Salomonsz R et al 1992 Nature 355 349
[17] Munuzuri A P, Innocenti C and Gilli J M et al 1994 Phys. Rev. E 50 R667
[18] Zhou L Q and Ouyang Q 2000 Phys. Rev. Lett. 85 1650
[19]Fenton F H, Cherry E M and Hastings H H et al 2002 Chaos 12 852
[20]Yang J Z, Xie F G and Qu Z L et al 2003 Phys. Rev.Lett. 91 148302
[21]Wang X, Tian X and Wang H L et al 2004 Chin. Phys.Lett. 21(12) 2365
[22]Ma J, Jia Y and Wang C N et al 2008 J. Phys. A: Math.Theor. 41 385105
[23]Zhang H, Cao Z J and Wu N J et al 2005 Phys. Rev.Lett. 94 188301
[24]Xiao J H, Hu G and Zhang H 2005 Eur. Phys. Lett. 69 29
[25]Ma J, Gao J H and Wang C N et al 2008 Chaos, Solitons Fractals 38 521
[26]Ma J, Ying H P and Li Y L 2007 Chin. Phys. 16955
[27]Yuang G Y, Yang S P and Wang G R et al 2008 ChinPhys. B 17 1925
[28]Wu N J, Li B W and Ying H P 2007 Chin. Phys. Lett. 23 2030
[29]Li B W, Sun L L and Chen B 2007 Chin. Phys. Lett. 24 2415
[30]Lindner B, Garcia-Ojalvo J, Neiman A and Schimansky-GeierL 2004 Phys. Rep. 392 321
[31]Sancho J M, Miguel M S and Katz S L et al 1982 Phys.Rev. A 26 1589
[32] Gonze D, Bernard S and Waltermann C et al 2005 Biophys. J. 89 120
[33]Goryachev A and Kapral R 1996 Phys. Rev. Lett. 76 1619
[34] Hu G, Xiao J H and Chua L O et al 1998 Phys. Rev.Lett. 80 1884
[35] Yu L C, Ma J and Zhang G Y et al 2008 Chin. Phys.Lett. 25 2706
[36]He D H, Hu G and Zhan M et al 2002 Phys. Rev. E 65 055204(R)
Related articles from Frontiers Journals
[1] K. Fakhar, A. H. Kara. The Reduction of Chazy Classes and Other Third-Order Differential Equations Related to Boundary Layer Flow Models[J]. Chin. Phys. Lett., 2012, 29(6): 4325-4328
[2] ZHAI Liang-Jun, ZHENG Yu-Jun, DING Shi-Liang. Chaotic Dynamics of Triatomic Normal Mode Molecules[J]. Chin. Phys. Lett., 2012, 29(6): 4325-4328
[3] NIU Yao-Bin, WANG Zhong-Wei, DONG Si-Wei. Modified Homotopy Perturbation Method for Certain Strongly Nonlinear Oscillators[J]. Chin. Phys. Lett., 2012, 29(6): 4325-4328
[4] LIU Yan, LIU Li-Guang, WANG Hang. Study on Congestion and Bursting in Small-World Networks with Time Delay from the Viewpoint of Nonlinear Dynamics[J]. Chin. Phys. Lett., 2012, 29(6): 4325-4328
[5] Paulo C. Rech. Dynamics in the Parameter Space of a Neuron Model[J]. Chin. Phys. Lett., 2012, 29(6): 4325-4328
[6] YAN Yan-Zong, WANG Cang-Long, SHAO Zhi-Gang, YANG Lei. Amplitude Oscillations of the Resonant Phenomena in a Frenkel–Kontorova Model with an Incommensurate Structure[J]. Chin. Phys. Lett., 2012, 29(6): 4325-4328
[7] LI Jian-Ping,YU Lian-Chun,YU Mei-Chen,CHEN Yong**. Zero-Lag Synchronization in Spatiotemporal Chaotic Systems with Long Range Delay Couplings[J]. Chin. Phys. Lett., 2012, 29(5): 4325-4328
[8] JIANG Jun**. An Effective Numerical Procedure to Determine Saddle-Type Unstable Invariant Limit Sets in Nonlinear Systems[J]. Chin. Phys. Lett., 2012, 29(5): 4325-4328
[9] FANG Ci-Jun,LIU Xian-Bin**. Theoretical Analysis on the Vibrational Resonance in Two Coupled Overdamped Anharmonic Oscillators[J]. Chin. Phys. Lett., 2012, 29(5): 4325-4328
[10] GU Guo-Feng,WEI Hai-Ming,TANG Guo-Ning**. Wave Optics in Discrete Excitable Media[J]. Chin. Phys. Lett., 2012, 29(5): 4325-4328
[11] WEI Du-Qu, LUO Xiao-Shu, ZHANG Bo. Noise-Induced Voltage Collapse in Power Systems[J]. Chin. Phys. Lett., 2012, 29(3): 4325-4328
[12] SUN Mei, CHEN Ying, CAO Long, WANG Xiao-Fang. Adaptive Third-Order Leader-Following Consensus of Nonlinear Multi-agent Systems with Perturbations[J]. Chin. Phys. Lett., 2012, 29(2): 4325-4328
[13] REN Sheng, ZHANG Jia-Zhong, LI Kai-Lun. Mechanisms for Oscillations in Volume of Single Spherical Bubble Due to Sound Excitation in Water[J]. Chin. Phys. Lett., 2012, 29(2): 4325-4328
[14] WANG Sha, YU Yong-Guang. Generalized Projective Synchronization of Fractional Order Chaotic Systems with Different Dimensions[J]. Chin. Phys. Lett., 2012, 29(2): 4325-4328
[15] OUYANG Ji-Ting, DUAN Xiao-Xi, XU Shao-Wei, HE Feng. The Key Factor for Uniform and Patterned Glow Dielectric Barrier Discharge[J]. Chin. Phys. Lett., 2012, 29(2): 4325-4328
Viewed
Full text


Abstract