Chin. Phys. Lett.  2008, Vol. 25 Issue (12): 4321-4324    DOI:
Original Articles |
A Conceptual Model of Somali Jet Based on the Biot--Savart Law
FENG Shi-De1, DONG Ping2, ZHONG Lin-Hao1
1LACS and LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences, PO Box 9804, Beijing 1000292School of Engineering, Physics and Mathematics, University of Dundee, Dundee, DD1 4HN, United Kingdom
Cite this article:   
FENG Shi-De, DONG Ping, ZHONG Lin-Hao 2008 Chin. Phys. Lett. 25 4321-4324
Download: PDF(296KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We study the relationship between thermal conditions on the earth bottom boundary and the formation of Somali jet based on the Biot--Savart law and the data from National Centres for Environmental Prediction (NCEP). As the radiation from the Sun gradually moves from the southern meridian, the temperature on the surface of Somali Peninsular and Arabic Peninsular gradually increases. During the same period the surface temperature of the Northern Indian Ocean increases much slower. It is shown that this increase of the temperature difference between the land and sea is inductive to the formation and development of Rayleigh--Benard convection and leads to the increasing relative vorticity strength between positive and negative vertical vortices over the land and sea. According to the Biot--Savart law, increase of vorticity strength will correspondingly induce the horizontal velocity. A pair of positive and negative vorticity fields over the two Peninsulars and the sea surface is effective in forming and maintaining this current. This mechanism is referred to as the `Somali suction pump'. It draws air continually from the Southern hemisphere and releases it at the coastal area of Somali.
Keywords: 47.27.-i      47.65.+a      92.60.Ek     
Received: 20 June 2008      Published: 27 November 2008
PACS:  47.27.-i (Turbulent flows)  
  47.65.+a  
  92.60.Ek  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2008/V25/I12/04321
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
FENG Shi-De
DONG Ping
ZHONG Lin-Hao
[2} Findlater J 1966 Met. Mug. 95 353
[3] Findlater J 1969 Q. J. Roy. Meteor. Soc. 9591
[4] Cadet D Reverdin G 1981 Tellus 33 476
[5] Cadet D Reverdin G 1981 Monthly Weather Review 109148
[6] Bannon P R 1979 J. Atmos. Sci. 36 2139
[7] Bannon P R 1982 J. Atmos. Sci. 39 2267
[8] Xu X D Zhao T L He J H and Z Q G 1993 Sci. Atmosph.Sinsca 17 641
[9] Qian Y F Wang Q Q DongY P and Gong Y F 1987 Sci.Atmosph. Sin. 11 176
[10] Zeng Q C Li J P 2002 Sci. Atmosph. Sin. 26433
[11] Holton J R 1979 An Introduction to Dynamic Meteorology(New York: Academic)
Related articles from Frontiers Journals
[1] ZHANG Hui-Qiang, LU Hao, WANG Bing**, WANG Xi-Lin . Experimental Investigation of Flow Drag and Turbulence Intensity of a Channel Flow with Rough Walls[J]. Chin. Phys. Lett., 2011, 28(8): 4321-4324
[2] LUO Jian-Ping, LU Zhi-Ming, USHIJIMA Tatsuo, KITOH Osami, LIU Yu-Lu,. Lagrangian Structure Function's Scaling Exponents in Turbulent Channel Flow[J]. Chin. Phys. Lett., 2010, 27(2): 4321-4324
[3] MI Jian-Chun, R. A. Antonia. Key Factors in Determining the Magnitude of Vorticity in Turbulent Plane Wakes[J]. Chin. Phys. Lett., 2010, 27(2): 4321-4324
[4] JIANG Mi, MA Ping. Vortex Turbulence due to the Interplay of Filament Tension and Rotational Anisotropy[J]. Chin. Phys. Lett., 2009, 26(7): 4321-4324
[5] CAO Yu-Hui, PEI Jie, CHEN Jun, SHE Zhen-Su,. Compressibility Effects in Turbulent Boundary Layers[J]. Chin. Phys. Lett., 2008, 25(9): 4321-4324
[6] TENG Hong-Hui, JIANG Zong-Lin. Analytical Interaction of the Acoustic Wave and Turbulent Flame[J]. Chin. Phys. Lett., 2007, 24(2): 4321-4324
[7] HU Kai-Heng, CHEN Kai. Relative Scaling Exponents and Intermittency in Compressible Turbulent Channel Flows[J]. Chin. Phys. Lett., 2005, 22(12): 4321-4324
[8] ZHANG Jian-Hui, XU Xue-Fei, SI Ming-Su, ZHOU You-He, XUE De-Sheng. Hydrodynamic Properties of Fe3O4 Kerosene-Based Ferrofluids with Narrow Particle Size Distribution[J]. Chin. Phys. Lett., 2005, 22(11): 4321-4324
[9] FANG Le, CUI Gui-Xiang, XU Chun-Xiao, ZHANG Zhao-Shun. Multi-Scale Analysis of Energy Transfer in Scalar Turbulence[J]. Chin. Phys. Lett., 2005, 22(11): 4321-4324
[10] ZHENG Lian-Cun, ZHANG Xin-Xin, HE Ji-Cheng. Transportation Characteristics for a Class of Generalized N-Diffusion Equation with Convection[J]. Chin. Phys. Lett., 2004, 21(6): 4321-4324
[11] HE Kai-Fen. Hopf Bifurcation in a Nonlinear Wave System[J]. Chin. Phys. Lett., 2004, 21(3): 4321-4324
[12] FU Song, LI Qi-Bing, WANG Ming-Hao. Depicting Vortex Stretching and Vortex Relaxing Mechanisms [J]. Chin. Phys. Lett., 2003, 20(12): 4321-4324
[13] ZHANG Hai-Yun, HE Kai-Fen. Charged Particle Motion in Temporal Chaotic and Spatiotemporal Chaotic Fields[J]. Chin. Phys. Lett., 2002, 19(4): 4321-4324
[14] HE Kai-Fen. Time-Averaged Behaviour at the Critical Parameter Point of Transition to Spatiotemporal Chaos [J]. Chin. Phys. Lett., 2001, 18(9): 4321-4324
[15] HE Kai-Fen, ZHANG Hai-Yun. Transition of One Mode-Phase at the Crisis and Onset of Spatiotemporal Chaos [J]. Chin. Phys. Lett., 2001, 18(2): 4321-4324
Viewed
Full text


Abstract