Chin. Phys. Lett.  2008, Vol. 25 Issue (11): 4181-4184    DOI:
Original Articles |
Node Weight Distribution and Disparity of Some Collaboration--Competition Networks
FU Chun-Hua, XU Xiu-Lian, LIU Ai-Fen, WU Yong-Ping, SHEN Dan, LIU Shui-Jing, QIAN Xia, FENG Ya-Chao, WEI Cheng-Liang, HE Da-Ren
College of Physics Science and Technology, Yangzhou University, Yangzhou 225002
Cite this article:   
FU Chun-Hua, XU Xiu-Lian, LIU Ai-Fen et al  2008 Chin. Phys. Lett. 25 4181-4184
Download: PDF(424KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

We present an empirical investigation of 14 real world networks, which can be described by bipartite graphs. We show that the basic elements (the actor nodes) in all the networks cooperate and compete in some acts (activities, organizations, or events). Each node is assigned by a `node weight', which denotes the obtained competition result. We are interested in the distribution and disparity of the node weight and propose three parameters for the description. Firstly, empirically we observe that the total node weight distributions of all the systems may be fitted by the so-called `shifted power law' function form. The key parameters of the function, α and γ, can be used to describe the disparity. Secondly, a `node weight disparity', Y, is defined for the same purpose. The empirical relationships among the parameters Y, α and γ, are obtained. From the relationships between Y and α as well as Y and γ, one can deduce the relationship between α and γ, which is in a good agreement with the empirically obtained relationship. The results show that the node weight distribution is very uneven.

Keywords: 89.75.Hc      89.75.-k     
Received: 20 August 2008      Published: 25 October 2008
PACS:  89.75.Hc (Networks and genealogical trees)  
  89.75.-k (Complex systems)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2008/V25/I11/04181
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
FU Chun-Hua
XU Xiu-Lian
LIU Ai-Fen
WU Yong-Ping
SHEN Dan
LIU Shui-Jing
QIAN Xia
FENG Ya-Chao
WEI Cheng-Liang
HE Da-Ren
[1] Wasserman S and Faust K 1994 Social Network Analysis:
Methods and Applications (Cambridge: Cambridge University Press)
[2] Xuan Q, Li Y J and Wu T J 2008 Chin. Phys. Lett.
25 363
[3] Watts D J and Strogatz S H 1998 Nature 393
440
[4] Barabasi A L and Albert R 1999 Science 286
509
[5] Newman M E J 2001 Phys. Rev. E 64 016131 Newman M E J 2001 Phys. Rev. E 64 016132
[6] Barabasi A L, Jeong H, Neda Z et al 2002 Physica A
311 590
[7] Zhang P P, Chen K, He Y et al 2006 Physica A
360 59
[8] Su B B, Chang H, Chen Y Z et al 2007 Physica A
379 291
[9] Chang H, Su B B, Zhou Y P et al 2007 Physica A
383 687
[10] Fu C-H, Zhang Z-P, Chang H et al 2008 Physica A
387 1411
[11] Xu X L, Fu C H, Shen D et al preprint
[12] Laherrere J and Sornette D 1998 Eur. Phys. J. B
2 525
[13] Jiang Z Q, Chen W and Zhou W X 2008 Physica A
387 5818
[14] Politi M and Scalas E 2008 Physica A 387
2025
[15] Hu H-B and Wang X F 2008 Physica A 387 3769
[16] Derrida B and Flyvbjerg H 1987 J. Phys. A 20
5273
Related articles from Frontiers Journals
[1] QI Kai,TANG Ming**,CUI Ai-Xiang,FU Yan. The Slow Dynamics of the Zero-Range Process in the Framework of the Traps Model[J]. Chin. Phys. Lett., 2012, 29(5): 4181-4184
[2] LIU Xu,XIE Zheng,YI Dong-Yun**. Community Detection by Neighborhood Similarity[J]. Chin. Phys. Lett., 2012, 29(4): 4181-4184
[3] LI Ping, ZHANG Jie, XU Xiao-Ke, SMALL Michael. Dynamical Influence of Nodes Revisited: A Markov Chain Analysis of Epidemic Process on Networks[J]. Chin. Phys. Lett., 2012, 29(4): 4181-4184
[4] XIE Zheng, YI Dong-Yun, OUYANG Zhen-Zheng, LI Dong. Hyperedge Communities and Modularity Reveal Structure for Documents[J]. Chin. Phys. Lett., 2012, 29(3): 4181-4184
[5] DUAN Wen-Qi. Formation Mechanism of the Accumulative Magnification Effect in a Financial Time Series[J]. Chin. Phys. Lett., 2012, 29(3): 4181-4184
[6] TIAN Liang, LIN Min. Relaxation of Evolutionary Dynamics on the Bethe Lattice[J]. Chin. Phys. Lett., 2012, 29(3): 4181-4184
[7] REN Xue-Zao, YANG Zi-Mo, WANG Bing-Hong, ZHOU Tao. Mandelbrot Law of Evolving Networks[J]. Chin. Phys. Lett., 2012, 29(3): 4181-4184
[8] ZHU Zi-Qi, JIN Xiao-Ling, HUANG Zhi-Long. Search for Directed Networks by Different Random Walk Strategies[J]. Chin. Phys. Lett., 2012, 29(3): 4181-4184
[9] SUN Mei, CHEN Ying, CAO Long, WANG Xiao-Fang. Adaptive Third-Order Leader-Following Consensus of Nonlinear Multi-agent Systems with Perturbations[J]. Chin. Phys. Lett., 2012, 29(2): 4181-4184
[10] GAO Zong-Mao, GU Jiao, LI Wei. Epidemic Spreading in a Multi-compartment System[J]. Chin. Phys. Lett., 2012, 29(2): 4181-4184
[11] MENG Qing-Kuan**, ZHU Jian-Yang . Constrained Traffic of Particles on Complex Networks[J]. Chin. Phys. Lett., 2011, 28(7): 4181-4184
[12] SUN Wei-Gang, , CAO Jian-Ting, WANG Ru-Bin** . Approach of Complex Networks for the Determination of Brain Death[J]. Chin. Phys. Lett., 2011, 28(6): 4181-4184
[13] LI Jun, WU Jun**, LI Yong, DENG Hong-Zhong, TAN Yue-Jin** . Optimal Attack Strategy in Random Scale-Free Networks Based on Incomplete Information[J]. Chin. Phys. Lett., 2011, 28(6): 4181-4184
[14] ZHAO Zhi-Dan, XIA Hu, SHANG Ming-Sheng**, ZHOU Tao, . Empirical Analysis on the Human Dynamics of a Large-Scale Short Message Communication System[J]. Chin. Phys. Lett., 2011, 28(6): 4181-4184
[15] SHANG Yi-Lun . Local Natural Connectivity in Complex Networks[J]. Chin. Phys. Lett., 2011, 28(6): 4181-4184
Viewed
Full text


Abstract