Original Articles |
|
|
|
|
Effect of Interface Roughness and Dislocation Density on Electroluminescence Intensity of InGaN Multiple Quantum Wells |
ZHAO De-Gang1, JIANG De-Sheng1, ZHU Jian-Jun1, LIU Zong-Shun1, ZHANG Shu-Ming1, WANG Yu-Tian1, YANG Hui 1,2 |
1State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, PO Box 912, Beijing 1000832Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou 215125 |
|
Cite this article: |
ZHAO De-Gang, JIANG De-Sheng, ZHU Jian-Jun et al 2008 Chin. Phys. Lett. 25 4143-4146 |
|
|
Abstract Effects of interface roughness and dislocation density on the electroluminescence (EL) intensity of InGaN multiple quantum wells (MQWs) are investigated. It is found that the EL intensity increases with the number of satellite peaks in the x-ray diffraction experiments of InGaN MQW samples. It is indicated that the rough interface will lead the reduction of EL intensity of InGaN MQW samples. It is also found that the EL intensity increases with the decrease of dislocation density which is characterized by the x-ray diffraction measurements. It is suggested that the EL intensity of InGaN MQWs can be improved by decreasing the interface roughness and dislocation density.
|
Keywords:
78.55.Cr
81.05.Ea
81.10.Bk
81.15.Gh
|
|
Received: 30 July 2008
Published: 25 October 2008
|
|
PACS: |
78.55.Cr
|
(III-V semiconductors)
|
|
81.05.Ea
|
(III-V semiconductors)
|
|
81.10.Bk
|
(Growth from vapor)
|
|
81.15.Gh
|
(Chemical vapor deposition (including plasma-enhanced CVD, MOCVD, ALD, etc.))
|
|
|
|
|
[1] Nakamura S, Pearton S and Fasol G 2000 The Blue Laser Diode (Berlin: Springer) [2] Lin Y S, Ma K J, Hsu C, Feng S W, Cheng Y C, Liao C C, Yang C C, Chou C C, Lee C M and Chyi J I 2000 Appl. Phys. Lett. 77 2988 [3] Jenong T S, Kim J H, Han M S, Lim K Y and Youn C J 2005 J. Crystal Growth 280 357 [4] L\"{u W, Li D B, Li C R, Chen G and Zhang Z 2005 Chin. Phys. Lett. 22 971 [5] Johji N, Lisa S, Hidetoshi F, Yoshihiro K and Kazuhiko I 1997 Appl. Phys. Lett. 70 3431 [6] Cho Y H, Song J J, Keller S, Minsky M S, Hu E, Mishra U K and DenBaars S P 1998 Appl. Phys. Lett. 73 1128 [7] Pan Z, Wang Y T, Li L H, Wang H, Wei Z, Zhou Z Q, Wu R H and Wang Q M 1999 Appl. Phys. Lett. 75 223 [8] Feldmann J, Peter G and G\"oel E O 1987 Phys. Rev. Lett. 59 2337 [9] Jiang H X, Ping E X, Zhou P and Lin J Y 1990 Phys. Rev. B 41 12949 [10] Keller S, Keller B P, Kapolnek D, Abare A C, Masui H, Coldren L A, Mishra U K and Den Baars S P 1996 Appl. Phys. Lett. 68 3147 [11] Sun C K, Chiu T L, Keller S, Wang G, Minsky M S, DenBaars S P and Bowers J E 1997 Appl. Phys. Lett. 71 425 [12] Shee S K, Kwon Y H, Lam J B, Gainer G H, Park G H, Hwang S J, Little B D and Song J J 2000 J. Crystal Growth 221 373 [13] Heinke H, Kirchner V, Einfeldt S and Hommel D 2000 Appl. Phys. Lett. 77 2145 [14] Zhao D G, Yang H, Zhu J J, Jiang D S, Liu Z S, Zhang S M, Wang Y T and Liang J W 2006 Appl. Phys. Lett. 89 112106 [15] Zhao D G, Jiang D S, Yang Hui, Zhu J J, Liu Z S, Zhang S M, Liang J W, Liu X, Li X Y and Gong H M 2006 Appl. Phys. Lett. 88 241917 [16] Jiang D S, Zhao D G and Yang H 2007 Phys. Status Solidi B 244 2878 [17] Rosner S J, Carr E C, Ludowise M J, Girolami G and Erikson H I 1997 Appl. Phys. Lett. 70 420 [18] Abell J and Moustakas T D 2008 Appl. Phys. Lett. 92 091901
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|